Copula-based Martingale Processes and Financial Prices Dynamics

U. Cherubini S. Mulinacci S. Romagnoli

Department of Mathematical Economics
University of Bologna

X Workshop on Quantitative Finance
Milan, January 29-30, 2009
Outline

1. Motivation
2. Copula Functions and Markov processes
3. Models with (in)dependent increments
4. Martingale Markov processes
5. Copula characterization of bivariate Markov processes
6. Copula-based Model Applications
Pricing Problem

Many correlation products are based on prices of a set of underlying assets observed at different dates.

Cross-section Compatibility

The price has to be consistent with those of the univariate assets at any given time.

Temporal Compatibility

The price has to be consistent with those at different dates.
Dependence in Finance

Pricing Problem
Many correlation products are based on prices of a set of underlying assets observed at different dates

Cross-section Compatibility
The price has to be consistent with those of the univariate assets at any given time

Temporal Compatibility
The price has to be consistent with those at different dates
Dependence in Finance

Pricing Problem

Many correlation products are based on prices of a set of underlying assets observed at different dates.

Cross-section Compatibility

The price has to be consistent with those of the univariate assets at any given time.

Temporal Compatibility

The price has to be consistent with those at different dates.
Assume an m-dimensional copula A and an n-dimensional copula B: the \star operator is defined as

$$A \star B(u_1, u_2, \ldots, u_{m+n-1}) = \int_0^1 \frac{\partial A(u_1, \ldots, u_{m-1}, t)}{\partial t} \frac{\partial B(t, u_{m+1}, \ldots, u_{m+n-1})}{\partial t} \, dt$$

Theorem (Darsow, Nguyen and Olsen, 1992)

A real valued stochastic process X_t is a Markov process if and only if, for all positive integers n and all $t_1 < t_2 < \ldots < t_n$

$$C_{t_1 \ldots t_n} = C_{t_1, t_2} \star C_{t_2, t_3} \star \ldots \star C_{t_{n-1}, t_n}$$

where $C_{t_1 \ldots t_n}$ is the copula of $(X_{t_1}, \ldots, X_{t_n})$ and C_{t_{k-1}, t_k} is the copula of $(X_{t_{k-1}}, X_{t_k})$.
Assume an m-dimensional copula A and an n-dimensional copula B: the $*$ operator is defined as

$$A \star B(u_1, u_2, ..., u_{m+n-1}) \equiv \int_0^u \frac{\partial A(u_1, ..., u_{m-1}, t)}{\partial t} \frac{\partial B(t, u_{m+1}, ..., u_{m+n-1})}{\partial t} \, dt$$

Theorem (Darsow, Nguyen and Olsen, 1992)

A real valued stochastic process X_t is a Markov process if and only if, for all positive integers n and all $t_1 < t_2 < \ldots < t_n$

$$C_{t_1...t_n} = C_{t_1,t_2} \star C_{t_2,t_3} \star \ldots \star C_{t_{n-1},t_n}$$

where $C_{t_1...t_n}$ is the copula of $(X_{t_1}, \ldots, X_{t_n})$ and C_{t_{k-1},t_k} is the copula of $(X_{t_{k-1}}, X_{t_k})$.
Assume an m-dimensional copula A and an n-dimensional copula B: the \star operator is defined as

$$A \star B(u_1, u_2, \ldots, u_{m+n-1}) \equiv \int_0^1 \frac{\partial A(u_1, \ldots, u_{m-1}, t)}{\partial t} \frac{\partial B(t, u_{m+1}, \ldots, u_{m+n-1})}{\partial t} dt$$

Theorem (Darsow, Nguyen and Olsen, 1992)

A real valued stochastic process X_t is a Markov process if and only if, for all positive integers n and all $t_1 < t_2 < \ldots < t_n$

$$C_{t_1 \ldots t_n} = C_{t_1, t_2} \star C_{t_2, t_3} \star \ldots \star C_{t_{n-1}, t_n}$$

where $C_{t_1 \ldots t_n}$ is the copula of $(X_{t_1}, \ldots, X_{t_n})$ and C_{t_{k-1}, t_k} is the copula of $(X_{t_{k-1}}, X_{t_k})$.
Our approach: dependent increments

Proposition

Take three continuous distributions H, F, G and $C(u, v)$ a bivariate copula function. Let $D_1 C(u, v) = \frac{\partial C(u, v)}{\partial u}$. Then the function

$$\hat{C}(u, v) \equiv \int_0^u D_1 C[w, F(G^{-1}(v) - H^{-1}(w))]dw$$

is a copula function iff

$$\int_0^1 D_1 C[w, F(z - H^{-1}(w))]dw \equiv H \ast F(z) = G(z)$$
In the context of random variable

Given \((Z, W)\) such that

- \(C(u, v)\) is the associated copula;
- \(H\) is the c.d.f. of \(Z\);
- \(F\) is the c.d.f. of \(W\), then

- \(\hat{C}(u, v)\) is the copula associated to \((Z, W + Z)\)
- \(H^C F\) is the c.d.f of \(W + Z\).
In the context of processes

- F represents the probability distribution of increments of the process $X_t - X_s$, H represents the distribution of X_s and $H^C \ast F$ represents the distribution of X_t;
- $\hat{C}(u, v)$ is the copula $C_{s,t}$ associated to (X_s, X_t);

Lévy processes:
- $C(u, v) = uv$ ⇒ the operator is the convolution;
- F depends only on $t - s$ (stationary increments).
In the context of processes

- F represents the probability distribution of increments of the process $X_t - X_s$, H represents the distribution of X_s and $H \ast F$ represents the distribution of X_t;
- $\hat{C}(u, v)$ is the copula $C_{s,t}$ associated to (X_s, X_t);

Lévy processes:
- $C(u, v) = uv \Rightarrow$ the operator is the convolution;
- F depends only on $t - s$ (stationary increments).
In the context of processes

- F represents the probability distribution of increments of the process $X_t - X_s$, H represents the distribution of X_s and $H \overset{C}{*} F$ represents the distribution of X_t;
- $\hat{C}(u, v)$ is the copula $C_{s,t}$ associated to (X_s, X_t);

Lévy processes:
- $C(u, v) = uv \Rightarrow$ the operator is the convolution;
- F depends only on $t - s$ (stationary increments).
An algorithm to construct discrete time Markov processes

- Denote $X_{t_{i-1}}$ the process at time t_{i-1} and H_{i-1} the corresponding c.d.f.;
- Denote Y_{t_i} the random increment of the process in the period $[t_{i-1}, t_i]$ and F_i the corresponding c.d.f.;
- Denote $C_i(u, v)$ the copula associated to $(X_{t_{i-1}}, Y_{t_i})$.

1. Start with the probability distribution H_1 of $X_{t_1};$
2. Compute $H_2(z) = H_1 \ast^C F_2$

 $$C_{t_1, t_2}(u, v) = \int_0^u D_1 C_2[w, F_2(H_2^{-1}(v) - H_1^{-1}(w))]dw;$$
3. Go back to step 2, and using F_3 and H_2 compute H_3...
An algorithm to construct discrete time Markov processes

- Denote $X_{t_{i-1}}$ the process at time t_{i-1} and H_{i-1} the corresponding c.d.f.;
- Denote Y_{t_i} the random increment of the process in the period $[t_{i-1}, t_i]$ and F_i the corresponding c.d.f.;
- Denote $C_i(u, v)$ the copula associated to $(X_{t_{i-1}}, Y_{t_i})$.

1. Start with the probability distribution H_1 of X_{t_1};
2. Compute $H_2(z) = H_1 \ast C_2 \ast F_2$
 $$C_{t_1,t_2}(u, v) = \int_0^u D_1 C_2[w, F_2(H_2^{-1}(v) - H_1^{-1}(w))]dw;$$
3. Go back to step 2, and using F_3 and H_2 compute H_3...
Martingale Markov processes

Copula characterization

Let X be a Markov process and $\Delta_{t-s}X_s = X_t - X_s$. Denote with $C^{t,s}$ the copula associated to $(X_s, \Delta_{t-s}X_s)$ and $F_{s,t}$ the c.d.f. of $\Delta_{t-s}X_s$. X is a martingale iff:

1. $F_{s,t}$ has finite mean for every s, t;
2. for every s, t, $\int_{0}^{1} F_{s,t}^{-1}(v) d(D_1 C^{t,s}(u, v)) = 0$, $\forall u \in [0, 1]$.
Proposition

If the law of $F_{s,t}$ is symmetric and

$$C^{s,t}(u, v) + C^{s,t}(u, 1 - v) = u \quad (1)$$

then X is a martingale.

Let $A(u, v)$ be a bivariate copula and $\hat{A}(u, v) \equiv u - A(u, 1 - v)$.

$$C(u, v) \equiv 0.5A(u, v) + 0.5\hat{A}(u, v)$$

is a copula that satisfies (1).
Proposition

If the law of $F_{s,t}$ is symmetric and

$$ C^{s,t}(u, v) + C^{s,t}(u, 1 - v) = u \tag{1} $$

then X is a martingale.

Let $A(u, v)$ be a bivariate copula and $\hat{A}(u, v) \equiv u - A(u, 1 - v)$. Then

$$ C(u, v) \equiv 0.5A(u, v) + 0.5\hat{A}(u, v) $$

is a copula that satisfies (1).
Proposition

If the law of $F_{s,t}$ is symmetric and

$$C^{s,t}(u, v) + C^{s,t}(u, 1 - v) = u \quad (1)$$

then X is a martingale.

Let $A(u, v)$ be a bivariate copula and $\hat{A}(u, v) \equiv u - A(u, 1 - v)$. Then

$$C(u, v) \equiv 0.5A(u, v) + 0.5\hat{A}(u, v)$$

is a copula that satisfies (1).
Let $m, n \geq 2$ and A and B be, respectively, m- and n-dimensional copulas. If

- $A_{1,\ldots,m|m-1,m}(u_1,\ldots,u_{m-2},\xi,\eta) = \frac{\partial^2 A(u_1,\ldots,u_{m-2},\xi,\eta)}{\partial \xi \partial \eta}$;
- $B_{1,\ldots,n|1,2}(\xi,\eta,u_3,\ldots,u_n) = \frac{\partial^2 B(\xi,\eta,u_3,\ldots,u_n)}{\partial \xi \partial \eta}$;
- $A(1,\ldots,1,\xi,\eta) = B(\xi,\eta,1,\ldots,1) = C(\xi,\eta)$

Then

$$A \star^2 B(u_1,\ldots,u_{m+n-2}) = \int_0^{u_{m-1}} \int_0^{u_m} A_{1,\ldots,m|m-1,m}(u_1,\ldots,u_{m-2},\xi,\eta)B_{1,\ldots,n|1,2}(\xi,\eta,u_3,\ldots,u_n) dC(\xi,\eta)$$
Let \((X, Y)\) be an \(\mathbb{R}^2\)-valued stochastic process and
\(C_{t_1,t_2,\ldots,t_n}(u_1, v_1, \ldots, u_n, v_n)\) denote the \(2n\)-dimensional copulas associated to \((X_{t_1}, Y_{t_1}, X_{t_2}, Y_{t_2}, \ldots, X_{t_n}, Y_{t_n})\).

An \(\mathbb{R}^2\)-valued stochastic process \((X, Y)\) is a Markov process if and only if for all \(t_i, i = 1, \ldots, n\), such that \(t_1 < \ldots < t_n\)

\[C_{t_1,t_2,\ldots,t_n} = C_{t_1,t_2} \star^2 C_{t_2,t_3} \star^2 \cdots \star^2 C_{t_{n-1},t_n}.\]
Martingale condition

The Markov process (X, Y) is a martingale with respect to the filtration $\mathcal{F}^{X,Y}$ iff:

1. $F_{\Delta_h X_t}$ and $F_{\Delta_h Y_t}$ have finite mean for every t;
2. for every t, h,

$$\int_0^1 F_{\Delta_h X_t}^{-1}(w) d \left(D_{1,2} C^{t+h}(u, v, w, 1) \right) = 0, \quad \forall u, v \in [0, 1]$$

and

$$\int_0^1 F_{\Delta_h Y_t}^{-1}(w) d \left(D_{1,2} C^{t+h}(u, v, 1, w) \right) = 0, \quad \forall u, v \in [0, 1].$$
Granger causality

In the setting of Markov processes, Y does not Granger cause X if

$$\mathbb{P}[X_{t+h} \leq x | X_t, Y_t] = \mathbb{P}[X_{t+h} \leq x | X_t].$$

⇓

If X is an $\mathcal{F}^{X,Y}$ Markov process, it is an \mathcal{F}^X Markov process as well.

⇓

If X is an \mathcal{F}^X-martingale, it is an $\mathcal{F}^{X,Y}$-martingale as well.
In the setting of Markov processes, Y does not Granger cause X if
\[P[X_{t+h} \leq x | X_t, Y_t] = P[X_{t+h} \leq x | X_t]. \]

\[\downarrow \]

If X is an $\mathcal{F}^{X,Y}$ Markov process, it is an \mathcal{F}^X Markov process as well.

\[\downarrow \]

If X is an \mathcal{F}^X-martingale, it is an $\mathcal{F}^{X,Y}$-martingale as well.
Granger causality

In the setting of Markov processes, Y does not Granger cause X if

$$P[X_{t+h} \leq x | X_t, Y_t] = P[X_{t+h} \leq x | X_t].$$

\Downarrow

If X is an $\mathcal{F}^{X,Y}$ Markov process, it is an \mathcal{F}^X Markov process as well.

\Downarrow

If X is an \mathcal{F}^X-martingale, it is an $\mathcal{F}^{X,Y}$-martingale as well.
Granger causality and copulas

Copula characterization

X and Y do not Granger cause each other iff

$$C_{t,t+h}(u, v, u', 1) = C_{Y,t,X_t} \ast C_{X,t,X_{t+h}}(v, u, u')$$

$$C_{t,t+h}(u, v, 1, v') = C_{X,t,Y_t} \ast C_{Y,t,Y_{t+h}}(u, v, v')$$
Hierarchical representation

If X and Y do not Granger cause each other the copula function $C_{t_1, t_2, \ldots, t_n}$ can be in a Hierarchical form

$$C_{t_1, \ldots, t_n}(u_1, v_1, \ldots, u_n, v_n) = C(G(u_1, \ldots, u_n), H(v_1, \ldots, v_n))$$

where the notation means that

$$G(u_1, \ldots, u_n) = C_{t_1, t_2} \ast \cdots \ast C_{t_{n-1}, t_n}(u_1, \ldots, u_n)$$
Barrier Altiplanos, Cherubini-Romagnoli (2008)

- Assume a note paying a set of coupons in \(k = 1, 2, \ldots, T \)
- Coupons are digital options indexed to a set of assets \(i = 1, 2, \ldots, n \)
- In each period \(k \) the price of assets is monitored at a set of dates \(j = 1, 2, \ldots, m_k \)
- Coupons are paid iff all the assets are above a barrier at all the reset periods
- The value of each coupons is exposed to \(n \times m_k \) risk factors and to their dependence structure.

We propose a pricing model based on Independent increments processes, Markov assumption and no Granger causality.
Assume a note paying a set of coupons in $k = 1, 2, \ldots, T$

- Coupons are digital options indexed to a set of assets $i = 1, 2, \ldots, n$
- In each period k the price of assets is monitored at a set of dates $j = 1, 2, \ldots, m_k$
- Coupons are paid iff all the assets are above a barrier at all the reset periods
- The value of each coupons is exposed to $n \times m_k$ risk factors and to their dependence structure.

We propose a pricing model based on Independent increments processes, Markov assumption and no Granger causality.
Motivation
Copula Functions and Markov processes
Models with (in)dependent increments
Martingale Markov processes
Copula characterization of bivariate Markov processes
Copula-based Model Applications
For Further Reading

VaR Aggregation, Cherubini-Mulinacci-Romagnoli (2009)

VaR Aggregation: temporal dimension

Let X_{i-1}, Y_i be two random variables with continuous c.d.f. $F_{X_{i-1}}$, F_{Y_i} and linked by temporal copula function C^i, our task is to determine VaR of X_i:

$$\int_0^1 D_1 C^i (w, F_{Y_i}(\text{VaR}_c(X_i) - \text{VaR}_{1-w}(X_{i-1}))) \, dw = 1 - c$$

where $\text{VaR}_c(X_i) = F_{X_i}^{-1}(1 - c)$
In this application we assume that Y_{t_i} (with c.d.f. F_i) is the percentage of losses in every time period $[t_{i-1}, t_i]$, $X_{t_{i-1}}$ (with c.d.f. H_i) gives the cumulated relative losses at time t_{i-1} and $C_i(x, y)$ is the associated copula function.

Then, the law of the dynamics of cumulated losses is recovered by iteratively computing the convolution-like relationship

$$H_i(z) = \int_0^1 D_i C_i[w, F_i(z - H_{i-1}^{-1}(w))] dw, \quad i = 2, \ldots$$

The constrains $0 \leq X_{t_i} \leq 1$ and $0 \leq Y_{t_i} \leq 1$ have to be imposed.
Constrained Problem

Proposition

Let X and Y be two continuous random variables. Let $[0, \alpha]$ and $[0, \beta]$, respectively, their support, F_X and F_Y their distribution and C the copula function associated to the random vector (X, Y). If $\gamma \geq \alpha \vee \beta$, $\mathbb{P}(X + Y \leq \gamma) = 1$ if and only if

$$D_1 C_{X,Y}(w, F_Y(\gamma - F_X^{-1}(w))) = 1, \quad \forall w \in [0,1] \quad \text{a.e.} \quad (2)$$

If $\alpha + \beta \leq \gamma$, (2) is satisfied for every copula function C and all marginal distributions F_X and F_Y.
Proposition

Let X and Y be two continuous random variables. Let $[0, \alpha]$ and $[0, \beta]$, respectively, their support, F_X and F_Y their distribution and C the copula function associated to the random vector (X, Y). If $\gamma \geq \alpha \lor \beta$, $\mathbb{P}(X + Y \leq \gamma) = 1$ if and only if

$$D_1 C_{X,Y} \left(w, F_Y(\gamma - F_X^{-1}(w)) \right) = 1, \quad \forall w \in [0, 1] \quad a.e. \quad (2)$$

If $\alpha + \beta \leq \gamma$, (2) is satisfied for every copula function C and all marginal distributions F_X and F_Y.

S. Romagnoli
Copula-based Martingale Processes
Constrained Problem

We are interested in studying the equation

\[D_1 C(u, v) = 1. \]

(3)

Let \(S_C = \{(u, v) \in [0, 1]^2 : D_1 C(u, v) = 1\} \).

Proposition

\((u, 1) \in S_C \) for almost all \(u \in [0, 1] \).

Proposition

If there exists \(\epsilon > 0 \) such that \(\forall u \in (\epsilon, 1], (u, v) \in S_C \) iff \(v = 1 \), then (2) holds if and only if \(\alpha + \beta \leq \gamma \).
Constrained Problem: some example

Archimedean Copulas

Let $C(u, v)$ be an Archimedean copula with generator ϕ. $S_C = \{(u, 1) : u \in [0, 1]\}$ if and only if ϕ' is invertible. If ϕ' is not invertible in an open interval (a, b) then

\[
\{(u, v) : u \in (a, b), v \in [\phi^{-1}(\phi(a) - \phi(u)), 1]\} \subset S_C.
\]

Andersen, L. and J. Sidenius (2004), "Extensions to the Gaussian copula: random recovery and random factor loading", Journal of Credit Risk, 1, 29-70

For Further Reading II

Motivation
Copula Functions and Markov processes
Models with (in)dependent increments
Martingale Markov processes
Copula characterization of bivariate Markov processes
Copula-based Model Applications

For Further Reading

Gregory, J., and J.P. Laurent (2003), "Basket default swaps, CDOs and factor copulas", ISFA Actuarial School and BNP Parisbas, Working paper
For Further Reading IV

For Further Reading V
