About

I work as research fellow at MOX - Politecnico di Milano since 2019. My main scientific interests are: advanced numerical methods for PDEs, a priori and a posteriori error analysis, computational fluid and solid mechanics, and geomechanical modelling. I am ER of the PDGeoFF project, funded by the EU in the context of MSCA International Fellowships. The aim of the project is to develop a numerical framework to evaluate risks related to human geological activities.

Profession
Postdoctoral researcher
Title
PhD
Phone
+39 02 2399 4521
Address
Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
Curriculum Vitae

Publications

[1] MB, A. Fumagalli, and A. Scotti. “Uncertainty quantification for mineral precipitation and dissolution in fractured porous media”. Submitted July 2022. Arxiv preprint: 2207.06299.
[2] MB, D. A. Di Pietro, and M. Salah. “A serendipity fully discrete div-div complex on polygonal meshes”. Submitted July 2022. Hal preprint: hal-03723495.
[3] P. F. Antonietti, S. Bonetti, and MB. “Discontinuous Galerkin approximation of the fully-coupled thermo-poroelastic problem”. Submitted May 2022. Arxiv preprint: 2205.04262.
[4] P. F. Antonietti, MB, and I. Mazzieri. “On mathematical and numerical modelling of multiphysics wave propagation with polytopal Discontinuous Galerkin methods: a review”. In: Vietnam J. Math. (July 2022). DOI: 10.1007/s10013-022-00566-3.
[5] P. F. Antonietti, MB, I. Mazzieri, and S. Nati Poltri. “A high-order discontinuous Galerkin method for the poro-elasto-acoustic problem on polygonal and polyhedral grids”. In: SIAM J. Sci. Comput. 44.1 (Sept. 2021), pp. B1-B28. DOI: 10.1137/21M1410919.
[6] L. Botti, MB, and D. A. Di Pietro. “Polyhedral Methods in Geosciences”. In: SEMA-SIMAI. Springer, July 2021. Chap. A Hybrid High-Order method for multiple-network poroelasticity, pp. 227–25. DOI: 10.1007/978-3-030-69363-3_6.
[7] L. Botti, MB, and D. A. Di Pietro. “An abstract analysis framework for monolithic discretisations of poroelasticity with application to Hybrid High-Order methods”. In: Comput. Math. Appl. 91.1 (June 2021), pp. 150–175. DOI: 10.1016/j.camwa.2020.06.004..
[8] MB, D. Castanon Quiroz, D. A. Di Pietro, and A. Harnist. “A Hybrid High-Order method for creeping flows of non-Newtonian fluids”. In: ESAIM: Math. Model Numer. Anal. (Aug. 20, 2021). Accepted for publication. DOI: 10.1051/m2an/2021051.
[9] MB, D. A. Di Pietro, O. Le Maˆıtre, and P. Sochala. “Numerical approximation of poroelasticity with random coefficients using Polynomial Chaos and Hybrid High-Order methods”. In: Comput. Methods Appl. Mech. Eng. 361 (Apr. 2020). DOI: 10.1016/j.cma.2019.112736.
[10] MB, D. A. Di Pietro, and P. Sochala. “A Hybrid High-Order discretization method for nonlinear poroelasticity”. In: Comput. Methods Appl. Math. 20.2 (Apr. 2020), pp. 227–249. DOI: 10.1515/cmam-2018-0142.
[11] MB and R. Riedlbeck. “Equilibrated stress tensor reconstruction and a posteriori error estimation for nonlinear elasticity”. In: Comput. Methods Appl. Math. 20.1 (Jan. 2020), pp. 39–59. DOI: 10.1515/cmam-2018-0012.
[12] MB, D. A. Di Pietro, and A. Guglielmana. “A low-order nonconforming method for linear elasticity on general meshes”. In: Comput. Methods Appl. Mech. Eng. 354 (Sept. 2019), pp. 96–118. DOI: 10.1016/j.cma.2019. 05.031.
[13] MB. “Advanced polyhedral discretization methods for poromechanical modelling”. PhD thesis. University of Montpellier, Nov. 2018. URL: https://tel.archives-ouvertes.fr/tel-01871074.
[14] MB, D. A. Di Pietro, and P. Sochala. “A nonconforming high-order method for nonlinear poroelasticity”. In: Finite Volumes for Complex Applications VIII – Hyperbolic, Elliptic and Parabolic Problems. 2017, pp. 537–545 . DOI: 10.1007/978-3-319-57394-6_56.
[15] MB, D. A. Di Pietro, and P. Sochala. “A Hybrid High-Order method for nonlinear elasticity”. In: SIAM J. Numer. Anal. 55.6 (Nov. 2017), pp. 2687–2717. DOI: 10.1137/16M1105943.
[16] D. Boffi, MB, and D. A. Di Pietro. “A nonconforming high-order method for the Biot problem on general meshes”. In: SIAM J. Sci. Comput. 38.3 (May 2016), A1508–A1537. DOI: 10.1137/15M1025505.

Teaching

Academic year Institution Courses
2022-2023 Politecnico di Milano, Milano, Italy. Numerical Linear Algebra. First year of the Master’s degree in High Performance Computing.
2021-2022 Politecnico di Milano, Milano, Italy. Numerical Approximation of Mathematical Models and Applications. Second year of the Master’s degree in Management Engineering.
2020-2021 Politecnico di Milano, Milano, Italy. Numerical Approximation of Mathematical Models and Applications. Second year of the Master’s degree in Management Engineering.
2019-2020 Politecnico di Milano, Milano, Italy.

Numerical Modeling of Differential Problems. First year of the Master’s degree in Aeronautical Engineering.

Curves and Surfaces for Design . First year of the Bachelor’s degree in Product Design.

2018-2019 Università degli Studi di Bergamo - Department of Engineering, Bergamo, Italy.

Mathematical analysis I . First year of the Bachelor’s degree in Technologies for Health.

Mathematical analysis II . Second year of the Bachelor’s degree in Computer Engineering.

2017-2018 Université de Montpellier, Montpellier, France.

Linear Algebra and Analysis. First year of the Bachelor’s degree in Mathematics.

Introduction to Scientific Calculus. First year of the Bachelor’s degree in Mathematics.

2016-2017 Université de Montpellier, Montpellier, France.

Euclidean Geometry and Bilinear Algebra. Second year of the Bachelor’s degree in Engineering.

Biomaths. First year of the Bachelor’s degree in Biological Sciences.