1 |
F. Gazzola, Existence and uniqueness results for a generalized
stationary Navier-Stokes equation, Rend. Ist.
Lombardo (Scienze) 126, 1992, 181-199 |
2 |
F. Gazzola, On stationary Navier-Stokes equations with a
pressure-dependent viscosity, Rend. Ist.
Lombardo (Scienze) 128, 1994, 107-119 |
3 |
F. Gazzola, An attractor for a 3D Navier-Stokes type equation,
Zeit. Anal. Anwend. 14, 1995, 509-522 PS file |
4 |
F. Gazzola, On a decomposition of the Hilbert space L2 and its applications to Stokes problem,
Ann. Univ.
Ferrara 41, 1995, 95-115 PDF file |
5 |
G. Arioli, F. Gazzola, Existence and
numerical approximation of periodic motions of an infinite lattice of
particles, Zeit. Angew. Math. Pys. 46, 1995, 898-912 PDF file |
6 |
G. Arioli, F. Gazzola, Periodic motions
of an infinite lattice of particles with nearest neighbor
interaction, Nonlinear Analysis T.M.A. 26, 1996,
1103-1114 PDF file |
7 |
M. Conti, F. Gazzola, Positive entire solutions of quasilinear
elliptic problems via nonsmooth critical point
theory, Top. Meth. Nonlin. Anal. 8, 1996,
275-294 PDF file |
8 |
G. Arioli, F. Gazzola, S. Terracini, Multibump
periodic motions of an infinite lattice of particles, Math. Zeit. 223,
1996, 627-642 PDF file |
9 |
F. Gazzola, Periodic motions in lattices of particles, Proc.
Dynamic Systems and Applications Vol. 2, Dynamic Publishers Inc. 1996,
183-190 PDF file |
10 |
F. Gazzola, V. Pata, A uniform attractor
for a nonautonomous generalized Navier-Stokes equation, Zeit. Anal. Anwend. 16, 1997, 435-449 PS file |
11 |
F. Gazzola, A note on the evolution Navier-Stokes equations with a
pressure-dependent viscosity, Zeit. Angew.
Math. Phys. 48, 1997, 760-773 PDF file |
12 |
F. Gazzola, B. Ruf, Lower order perturbations
of critical growth nonlinearities in semilinear
elliptic equations, Adv. Diff. Eq. 2, 1997, 555-572 PDF file |
13 |
F. Gazzola, Periodic motions of a lattice of particles with singular
forces, Diff. Int. Eq. 10, 1997, 245-264 PDF file |
14 |
G. Arioli, F. Gazzola, Weak solutions of
quasilinear elliptic equations as critical points of nonsmooth
functionals, Ann. Fac. Sci. Toulouse 6, 1997, 573-589 PDF file |
15 |
G. Arioli, F. Gazzola, Quasilinear
elliptic equations at critical growth, Nonlin.
Diff. Eq. Appl. 5, 1998, 83-97 PDF file |
16 |
F. Gazzola, M. Sardella, Attractors for
families of processes in weak topologies of Banach spaces, Disc. Cont. Dynam. Syst. 4, 1998, 455-466 PDF file |
17 |
F. Gazzola, Critical growth problems for polyharmonic
operators, Proc. Roy. Soc. Edinburgh 128A, 1998,
251-263 PDF file |
18 |
G. Arioli, F. Gazzola, Some results on
p-Laplace equations with a critical growth term, Diff. Int. Eq. 11, 1998,
311-326 PDF file |
19 |
F. Gazzola, P. Secchi, Some results about stationary Navier-Stokes
equations with a pressure-dependent viscosity, Proc. Internat. Conf. on
Navier-Stokes Equations, Theory and Numerical Methods, Varenna
1997, Pitman Res. Notes Math. Ser. 388, 1998, 31-37 PDF file |
20 |
F. Gazzola, G. Prouse, A note on approximable solutions of 3D Navier-Stokes equations,
Proc. Internat. Conf. on Navier-Stokes Equations, Theory and Numerical
Methods, Varenna 1997, Pitman Res. Notes Math. Ser.
388, 1998, 174-183 PDF file |
21 |
F. Gazzola, Positive solutions of critical quasilinear elliptic
problems in general domains, Abstract Appl. Anal. 3, 1998, 65-84
PDF file |
22 |
G. Arioli, F. Gazzola, On a quasilinear
elliptic differential equation in unbounded domains, Rend. Sem. Mat.
Univ. Trieste 30, 1998, 113-128 PDF file |
23 |
F. Gazzola, Existence of minima for nonconvex functionals in spaces
of functions depending on the distance from the boundary, Arch. Rat.
Mech. Anal. 150, 1999, 57-76 PDF file |
24 |
F. Gazzola, V. Radulescu, A nonsmooth critical point theory approach to some
nonlinear elliptic equations in R^n, Diff. Int.
Eq. 13, 2000, 47-60 PDF file |
25 |
F. Gazzola, M. Lazzarino, Existence
results for general critical growth semilinear
elliptic equations, Comm. Appl. Anal. 4, 2000, 39-50 PDF file |
26 |
F. Gazzola, J. Serrin, M. Tang, Existence
of ground states and free boundary problems for quasilinear elliptic
operators, Adv. Diff. Eq. 5, 2000, 1-30 PDF file |
27 |
G. Arioli, F. Gazzola, Existence and
multiplicity results for quasilinear elliptic differential systems, Comm.
Part. Diff. Eq. 25, 2000, 125-153 PDF file |
28 |
G. Arioli, F. Gazzola, S. Terracini, Minimization properties of Hill's orbits
and applications to some N-body problems, Ann. Inst. Henri Poincaré,
Analyse non Linéaire 17, 2000, 617-650 PDF file |
29 |
F. Gazzola, H.C. Grunau, On the role of space dimension n=2+2√2 in the semilinear Brezis-Nirenberg
eigenvalue problem, Analysis 20, 2000, 395-399 PDF file |
30 |
F. Gazzola, Critical growth quasilinear elliptic problems with
shifting subcritical perturbation, Diff. Int. Eq. 14, 2001,
513-528 PDF file |
31 |
F. Gazzola, H.C. Grunau, Critical dimensions and higher order Sobolev inequalities with remainder terms, Nonlin. Diff. Eq. Appl. 8, 2001, 35-44 PDF file |
32 |
F. Gazzola, P. Secchi, Inflow-outflow problems for Euler equations
in a rectangular cylinder, Nonlin. Diff. Eq.
Appl. 8, 2001, 195-217 PDF file |
33 |
F. Gazzola, On radially symmetric minima of nonconvex functionals,
J. Math. Anal. Appl. 258, 2001, 490-511 PDF file |
34 |
A. Ferrero, F. Gazzola, Existence of solutions for singular
critical growth semilinear elliptic equations,
J. Diff. Eq. 177, 2001, 494-522 PDF file |
35 |
G. Crasta, F. Gazzola, Web functions:
survey of results and perspectives, Rend. Ist.
Mat. Univ. Trieste 33, 2001, 313-326 PDF file |
36 |
M. Conti, F. Gazzola, Existence of ground states and free boundary
problems for the prescribed mean curvature equation, Adv. Diff. Eq. 7, 2002,
667-694 PDF file |
37 |
F. Gazzola, A. Malchiodi, Some remarks on
the equation -∆
u=λ (1+u)p for varying
λ, p and varying domains, Comm. Part. Diff. Eq. 27, 2002,
809-845 PDF file |
38 |
F. Gazzola, J. Serrin, Asymptotic behavior of ground states of quasilinear elliptic
problems with two vanishing parameters, Ann. Inst. Henri Poincaré,
Analyse non Linéaire 19, 2002, 477-504 PDF file |
39 |
G. Crasta, F. Gazzola, Some estimates of
the minimizing properties of web functions, Calculus of Variations 15,
2002, 45-66 PDF file |
40 |
G. Crasta, I. Fragalà,
F. Gazzola, A sharp upper bound for the torsional rigidity of rods by
means of web functions, Arch. Rat. Mech. Anal. 164, 2002,
189-211 PDF file |
41 |
F. Gazzola, The sharp exponent for a Liouville-type theorem for an
elliptic inequality, Rend. Ist. Mat. Univ.
Trieste 34, 2002, 99-102 PDF file |
42 |
F. Gazzola, Critical exponents which relate embedding inequalities
with quasilinear elliptic problems, Disc. Cont. Dynam.
Syst. Suppl. Vol. 2003, 327-335
PDF file |
43 |
F. Gazzola, L. Pisani, Remarks on quasilinear elliptic equations as
models for elementary particles, Disc. Cont. Dynam.
Syst. Suppl. Vol. 2003, 336-341 PDF file |
44 |
A. Ferrero, F. Gazzola, On subcriticality assumptions for the
existence of ground states of quasilinear elliptic equations, Adv. Diff.
Eq. 8, 2003, 1081-1106 PDF file |
45 |
F. Gazzola, L. Peletier, P. Pucci, J. Serrin, Asymptotic behavior
of ground states of quasilinear elliptic problems with two vanishing
parameters, Part II, Ann. Inst. Henri Poincaré,
Analyse non Linéaire 20, 2003, 947-974 PDF file |
46 |
F. Gazzola, H.C. Grunau, M. Squassina, Existence
and nonexistence results for critical growth biharmonic elliptic equations,
Calculus of Variations 18, 2003, 117-143 PDF file |
47 |
A. Ferrero, F. Gazzola, Asymptotic behavior
of ground states of quasilinear elliptic problems with two vanishing
parameters, Part III, J. Diff. Eq. 198, 2004,
53-90 PDF file |
48 |
F. Gazzola, H.C. Grunau, E. Mitidieri, Hardy
inequalities with optimal constants and remainder terms, Trans. Amer.
Math. Soc. 356, 2004, 2149-2168 PDF file |
49 |
F. Gazzola, Finite time blow-up and global solutions for some
nonlinear parabolic equations, Diff. Int. Eq. 17, 2004,
983-1012 PDF file |
50 |
I. Fragalà, F. Gazzola, B. Kawohl, Existence and nonexistence results for
anisotropic quasilinear elliptic equations, Ann. Inst. Henri Poincaré, Analyse non Linéaire
21, 2004, 715-734 PDF file |
51 |
G. Arioli, F. Gazzola, H.C. Grunau, E. Mitidieri, A semilinear
fourth order elliptic problem with exponential nonlinearity, SIAM J.
Math. Anal. 36, 2005, 1226-1258
PDF file |
52 |
E. Berchio, F. Gazzola, Some remarks on
biharmonic elliptic problems with positive, increasing and convex
nonlinearities, Electronic J. Diff. Eq. 34, 2005, 1-20
PDF file |
53 |
G. Crasta, I. Fragalà,
F. Gazzola, On the role of energy convexity in the web function
approximation, Nonlin. Diff. Eq. Appl. 12,
2005, 93-109 PDF file |
54 |
F. Gazzola, T. Weth, Finite time blow-up
and global solutions for semilinear parabolic
equations with initial data at high energy level, Diff. Int. Eq. 18,
2005, 961-990 PDF file |
55 |
G. Crasta, I. Fragalà,
F. Gazzola, On a long-standing conjecture by Polya-Szego
and related topics, Zeit. Angew. Math. Phys.
56, 2005, 763-782 PDF file |
56 |
I. Fragalà, F. Gazzola, G. Lieberman, Regularity
and nonexistence results for anisotropic quasilinear elliptic equations in
convex domains, Disc. Cont. Dynam. Syst. Suppl.
Vol. 2005, 280-286 PDF file |
57 |
F. Gazzola, No geometric approach for general overdetermined
elliptic problems with nonconstant source, Le Matematiche
60, 2005, 259-268 PDF file |
58 |
A. Ferrero, F. Gazzola, T. Weth, On a
fourth order Steklov eigenvalue problem,
Analysis 25, 2005, 315-332 PDF file |
59 |
F. Gazzola, H.C. Grunau, Radial entire solutions for supercritical
biharmonic equations, Math. Annalen 334, 2006,
905-936 PDF file |
60 |
F. Gazzola, M. Squassina, Global
solutions and finite time blow up for damped semilinear
wave equations, Ann. Inst. Henri Poincaré,
Analyse non Linéaire 23, 2006, 185-207 PDF file |
61 |
E. Berchio, F. Gazzola, Best constants
and minimizers for embeddings of second order Sobolev
spaces, J. Math. Anal. Appl. 320, 2006, 718-735 PDF file |
62 |
I. Fragalà, F. Gazzola, B. Kawohl, Overdetermined problems with possibly
degenerate ellipticity, a geometric approach, Math. Zeit. 254, 2006, 117-132
PDF file |
63 |
E. Berchio, F. Gazzola, E. Mitidieri, Positivity preserving property for a class
of biharmonic elliptic problems, J. Diff. Eq. 229, 2006, 1-23
PDF file |
64 |
G. Arioli, F. Gazzola, H.C. Grunau, Entire
solutions for a semilinear fourth order elliptic
problem with exponential nonlinearity, J. Diff. Eq. 230, 2006, 743-770
PDF file |
65 |
A. Ferrero, F. Gazzola, T. Weth, Positivity, symmetry and uniqueness for minimizers of second order Sobolev inequalities, Ann. Mat. Pura Appl. 186, 2007, 565-578 PDF file |
66 |
G. Crasta, I. Fragalà,
F. Gazzola, Some estimates for the torsional rigidity of composite rods,
Math. Nachr. 280, 2007, 242-255 PDF file |
67 |
E. Berchio, F. Gazzola, T. Weth, Critical growth biharmonic elliptic problems
under Steklov-type boundary conditions, Adv.
Diff. Eq. 12, 2007, 381-406 PDF file |
68 |
F. Gazzola, H.C. Grunau, Global solutions for superlinear
parabolic equations involving the biharmonic operator for initial data with
optimal slow decay, Calculus of Variations 30, 2007, 389-415
PDF file |
69 |
G. Arioli, F. Gazzola, H.C. Grunau, E. Sassone, The second bifurcation branch for radial
solutions of the Brezis-Nirenberg problem in
dimension four, Nonlin. Diff. Eq. Appl. 15, 2008, 69-90
PDF file |
70 |
F. Gazzola, H.C. Grunau, Eventual local positivity for a biharmonic
heat equation in R^n, Disc. Cont. Dynam. Syst. S 1, 2008, 83-87 PDF file |
71 |
E. Berchio, F. Gazzola, T. Weth, Radial symmetry of positive solutions to
nonlinear polyharmonic Dirichlet problems, J.
Reine Angew. Math. 620, 2008,
165-183 PDF file |
72 |
A. Ferrero, F. Gazzola, H.C. Grunau, Decay and eventual local
positivity for biharmonic parabolic equations, Disc. Cont. Dynam. Syst. 21, 2008, 1129-1157 PDF file |
73 |
F. Gazzola, G. Sweers, On positivity for
the biharmonic operator under Steklov boundary
conditions, Arch. Rat. Mech. Anal. 188, 2008, 399-427 PDF file |
74 |
I. Fragalà, F. Gazzola, Partially
overdetermined elliptic boundary value problems, J. Diff. Eq. 245, 2008,
1299-1322 PDF file |
75 |
E. Berchio, F. Gazzola, D. Pierotti, Nodal solutions to critical growth elliptic problems under Steklov boundary conditions, Comm. Pure Appl. Anal. 8, 2009, 533-557 PDF file |
76 |
D. Bucur, A. Ferrero, F. Gazzola, On the first eigenvalue of a
fourth order Steklov problem, Calculus of
Variations 35, 2009, 103-131 PDF file |
77 |
F. Gazzola, D. Pierotti, Positive solutions
to critical growth biharmonic elliptic problems under Steklov
boundary conditions, Nonlinear Analysis T.M.A. 71, 2009,
232-238 PDF file |
78 |
I. Fragalà, F. Gazzola, J. Lamboley, M. Pierre, Counterexamples to symmetry for
partially overdetermined elliptic problems, Analysis 29, 2009, 85-93
PDF file |
79 |
F. Gazzola, H.C. Grunau, Some new properties of biharmonic heat
kernels, Nonlinear Analysis T.M.A. 70, 2009, 2965-2973
PDF file |
80 |
E. Berchio, F. Gazzola, D. Pierotti, Gelfand type elliptic problems under Steklov boundary conditions, Ann. Inst. Henri Poincaré,
Analyse non Linéaire 27, 2010, 315-335 PDF file |
81 |
E. Berchio, D. Cassani,
F. Gazzola, Hardy-Rellich inequalities with
boundary remainder terms and applications, Manuscripta
Math. 131, 2010, 427-458 PDF file |
82 |
F. Gazzola, H.C. Grunau, G. Sweers,
Optimal Sobolev and Hardy-Rellich
constants under Navier boundary conditions, Ann. Mat. Pura Appl. 189, 2010,
475-486 PDF file |
83 |
F. Gazzola, T. Weth, Remainder terms in a
higher order Sobolev inequality, Archiv der Mathematik 95, 2010,
381–388 PDF file |
84 |
I. Fragalà, F. Gazzola, M. Pierre, On an
isoperimetric inequality for capacity conjectured by Polya
and Szego, J. Diff. Eq. 250, 2011, 1500-1520 PDF file |
85 |
E. Berchio, F. Gazzola, Positive
solutions to a linearly perturbed critical growth biharmonic problem,
Disc. Cont. Dyn. Syst. S 4, 2011,
809-823 PDF file |
86 |
D. Bucur, F. Gazzola, The first
biharmonic Steklov eigenvalue: positivity
preserving and shape optimization, Milan J. Math. 79, 2011, 247-258
PDF file |
87 |
E. Berchio, A. Ferrero, F. Gazzola, P. Karageorgis, Qualitative
behavior of global solutions to some nonlinear
fourth order differential equations, J. Diff. Eq. 251, 2011, 2696-2727
PDF file |
88 |
F. Gazzola, R. Pavani, Blow up oscillating solutions to some
nonlinear fourth order differential equations, Nonlinear Analysis T.M.A.
74, 2011, 6696-6711 PDF file |
89 |
E. Berchio, A. Farina, A. Ferrero, F.
Gazzola, Existence and stability of
entire solutions to a semilinear fourth order
elliptic problem, J. Diff. Eq. 252, 2012, 2596-2616 PDF file |
90 |
F. Gazzola, R. Pavani, Blow-up oscillating solutions to some
nonlinear fourth order differential equations describing oscillations of suspension
bridges, IABMAS12, 6th International Conference on Bridge Maintenance,
Safety, Management, Resilience and Sustainability, 3089-3093, Stresa 2012,
Biondini & Frangopol (Editors), Taylor &
Francis Group, London (2012) PDF file |
91 |
M. Bonforte, F. Gazzola, G. Grillo, J.L.
Vázquez, Classification of radial solutions to the Emden-Fowler equation
on the hyperbolic space, Calculus of Variations 46, 2013, 375-401
PDF file |
92 |
P.R.S. Antunes, F. Gazzola, Convex
shape optimization for the least biharmonic Steklov
eigenvalue, ESAIM COCV 19, 2013, 385-403
PDF file |
93 |
I. Fragalà, F. Gazzola, J. Lamboley, Sharp
bounds for the p-torsion of convex planar domains, Geometric Properties
for Parabolic and Elliptic PDE's, Springer INdAM
Series Vol. 2, 2013, 97-115 PDF file |
94 |
F. Gazzola, On the moments of solutions to linear parabolic
equations involving the biharmonic operator, Disc. Cont. Dynam. Syst. A Disc. Cont. Dyn.
Syst. A 33, 2013, 3583-3597 PDF file |
95 |
F. Gazzola, R. Pavani, Wide oscillations finite time blow up for solutions
to nonlinear fourth order differential equations, Arch. Rat. Mech. Anal.
207, 2013, 717-752 PDF file |
96 |
G. Barbatis, F. Gazzola, Higher order
linear parabolic equations, Contemporary Mathematics 594, 2013, 77-97
PDF file |
97 |
F. Gazzola, Nonlinearity
in suspension bridges, Electron. J. Diff. Equ.
no.211, 2013, 1-47 PDF file |
98 |
G. Arioli,
F. Gazzola, Old and new explanations of the Tacoma Narrows Bridge collapse,
Atti XXI Congresso
AIMETA, Torino, 2013, 10pp. PDF file |
99 |
E. Barucci, F. Gazzola, Prices in the
utility function and demand monotonicity, Kodai
Math. J. 37, 2014, 544-567
PDF file |
100 |
M. Al-Gwaiz, V. Benci,
F. Gazzola, Bending and stretching
energies in a rectangular plate modeling suspension bridges, Nonlinear
Analysis T.M.A. 106, 2014, 18-34 PDF file |
101 |
F. Gazzola, M. Jleli, B. Samet, On the Melan equation for
suspension bridges, J. Fixed Point Theory Appl. 16, 2014, 159-188
PDF file |
102 |
C. Escudero, F. Gazzola, I. Peral, Existence versus blow-up
results for a fourth order parabolic PDE involving the Hessian, J. Math. Pures Appl. 103, 2015, 924-957
PDF file |
103 |
F. Gazzola, Hexagonal design for stiffening trusses, Ann. Mat.
Pura Appl. 194, 2015, 87-108 PDF file |
104 |
G. Arioli, F. Gazzola, A new mathematical
explanation of what triggered the catastrophic torsional mode of the Tacoma
Narrows Bridge collapse, Appl. Math. Modelling 39, 2015, 901-912
PDF file |
105 |
F. Gazzola, P. Karageorgis, Refined blow-up results for
nonlinear fourth order differential equations, Comm. Pure Appl. Anal. 12,
2015, 677-693
PDF file |
106 |
E. Berchio, F. Gazzola, A qualitative explanation of
the origin of torsional instability in suspension bridges, Nonlinear
Analysis TMA 121, 2015, 54-72 PDF file |
107 |
A. Ferrero, F. Gazzola, A partially hinged rectangular plate as a
model for suspension bridges, Disc. Cont. Dyn.
Syst. A 35, 2015, 5879-5908 PDF file |
108 |
C. Escudero, F. Gazzola, R. Hakl, I. Peral,
P. Torres, Existence results
for a fourth order partial differential equation arising in condensed matter
physics, Math. Bohemica 140, 2015, 385-393 PDF file |
109 |
F. Gazzola, R. Pavani, The impact of nonlinear restoring forces acting on hinged elastic
beams, Bull. Belgian Math. Soc. 22, 2015, 559-578 PDF file |
110 |
E. Berchio, F. Gazzola, The role of aerodynamic forces in a mathematical model for suspension
bridges, Dynamical Systems, Differential Equations and Applications, AIMS
Proceedings, 2015, 112-121 PDF file |
111 |
F. Gazzola, Y. Wang, Modeling suspension bridges
through the von Karman quasilinear plate equations, Progress in
Nonlinear Differential Equations and Their Applications, In: Contributions to
Nonlinear Differential Equations and Systems, a tribute to Djairo Guedes de Figueiredo on
occasion of his 80th birthday, 2015, 269-297 PDF file |
112 |
G. Arioli, F. Gazzola, On a nonlinear nonlocal hyperbolic system modeling suspension
bridges, Milan J. Math. 83, 2015, 211-236 PDF file |
113 |
E. Berchio, F. Gazzola, C. Zanini, Which
residual mode captures the energy of the dominating mode in second order
Hamiltonian systems?, SIAM J. Appl. Dyn. Syst. 15, 2016, 338-355
PDF file |
114 |
E. Berchio, A. Ferrero, F. Gazzola, Structural
instability of nonlinear plates modelling suspension bridges: mathematical
answers to some long-standing questions, Nonlin.
Anal. Real World Appl. 28, 2016, 91-125
PDF file |
115 |
V. Ferreira, F. Gazzola, E. Moreira dos Santos, Instability of modes in a partially hinged rectangular plate, J.
Diff. Eq. 261, 2016, 6302-6340
PDF file |
116 |
G. Arioli, F. Gazzola, Torsional instability in suspension bridges: the Tacoma Narrows
Bridge case, Communications Nonlinear Sci. Numerical Simulation 42, 2017, 342-357 PDF file |
117 |
V. Benci, D. Fortunato, F. Gazzola, Existence of torsional solitons in a beam model of suspension bridge,
Arch. Rat. Mech. Anal. 226, 2017, 559-585 PDF file |
118 |
E. Berchio, D. Buoso,
F. Gazzola, A measure of the torsional performances
of partially hinged rectangular plates, In: Integral Methods in Science
and Engineering, Vol.1, Theoretical Techniques, Eds: C. Constanda,
M. Dalla Riva, P.D. Lamberti, P. Musolino, Birkhauser 2017, 35-46 PDF file |
119 |
M. Garrione, F. Gazzola, Loss of
concentration on linear modes in nonlinear evolution beam equations, J.
Nonlinear Sci. 27, 2017, 1789-1827
PDF file |
120 |
U. Battisti, E. Berchio, A. Ferrero, F.
Gazzola, Energy transfer between modes
in a nonlinear beam equation, J. Math. Pures
Appl. 108, 2017, 885-917
PDF file |
121 |
E. Berchio, D. Buoso,
F. Gazzola, On the variation of
longitudinal and torsional frequencies in a partially hinged rectangular
plate, ESAIM COCV 24, 2018, 63-87 PDF file |
122 |
F. Gazzola, G. Sperone, Thresholds
for hanger slackening and cable shortening in the Melan equation for
suspension bridges, Nonlin. Anal. Real World Appl. 39, 2018, 520–536 PDF file |
123 |
C. Gasparetto, F. Gazzola, Resonance tongues for the Hill equation
with Duffing coefficients and instabilities in a nonlinear beam equation,
Comm. Contemp. Math. 20, 2018, 1750022 (22 pp.) PDF file |
124 |
F. Gazzola, Y. Wang, R. Pavani, Variational
formulation of the Melan equation, Math. Meth. Appl. Sci. 41,
2018, 943-951 PDF file |
125 |
F. Gazzola, V. Racic, A model of synchronisation in crowd dynamics, Appl. Math.
Modelling 59, 2018, 305-318 PDF file |
126 |
E. Berchio, D. Buoso, F. Gazzola, D. Zucco, A minimaxmax problem for improving the torsional stability of
rectangular plates, J. Optim. Theory Appl.
177, 2018, 64-92 PDF file |
127 |
P. Antunes, F. Gazzola, Some solutions of minimaxmax problems for the torsional displacements of
rectangular plates, ZAMM 98, 2018, 1974-1991 PDF file |
128 |
D. Bonheure, F. Gazzola, E. Moreira dos
Santos, Periodic solutions and torsional instability in a
nonlinear nonlocal plate equation, SIAM J. Math. Anal. 51, 2019, 3052-3091 PDF file |
129 |
F. Gazzola, G. Sperone, Boundary
conditions for the Stokes equations inducing vortices around concave corners, Milan J. Math.
87, 2019, 169-199 PDF file |
130 |
D. Bonheure, F. Gazzola, G. Sperone, Eight(y)
mathematical questions on fluids and structures, Atti Accad. Naz. Lincei
Rend. Lincei Mat. Appl. 30, 2019, 759-815 PDF file |
131 |
J. Chu, M. Garrione, F. Gazzola, Stability analysis in some strongly
prestressed rectangular plates, Evol. Eq.
Control Theory 9, 2020, 275-299 PDF file |
132 |
M. Garrione, F. Gazzola, Linear theory for beams with
intermediate piers, Commun. Contemp. Math. 22, 2020, 1950081, 41 pp. PDF file |
133 |
G. Crasta, A. Falocchi, F. Gazzola, A new model for
suspension bridges involving the convexification of the cables, Zeit. Angew.
Math. Phys. 71, 2020, no.3, 93 PDF file |
134 |
F. Gazzola, G. Sperone, Steady Navier-Stokes
equations in planar domains with obstacle and explicit bounds for unique
solvability, Arch. Ration. Mech. Anal. 238, 2020, 1283-1347 PDF file |
135 |
I. Fragalà, F. Gazzola, G. Sperone, Solenoidal
extensions in domains with obstacles: explicit bounds and applications to
Navier-Stokes equations, Calculus of Variations 59:196, 2020 PDF file |
136 |
D. Bonheure, G.P. Galdi, F. Gazzola, Equilibrium
configuration of a rectangular obstacle immersed in a channel flow, C.R. Math. Acad.
Sci. Paris 358, 2020, 887–896 PDF file |
137 |
F. Gazzola, The optimal lockdown
strategy against virus propagation and economic loss, In: Math in the
Time of Corona, Mathematics Online First Collections, A. Wonders (ed.),
Springer Nature Switzerland, 2020 PDF file |
138 |
F. Gazzola, G. Sperone, Bounds
for Sobolev embedding constants in non-simply
connected planar domains, In: Geometric Properties for Parabolic and Elliptic
PDEs, V. Ferone et al. (eds.), Springer INdAM Series 47, 2021, 103-125
PDF file |
139 |
F. Gazzola, E.M. Marchini, The
moon lander optimal control problem revisited, Mathematics in Engineering
3(5), 2021, 1-14
PDF file |
140 |
G. Catino, F. Gazzola, P. Mastrolia, A conformal
Yamabe problem with potential on the Euclidean space, Ann. Mat. Pura
Appl. 200, 2021, 1987-1998
PDF file |
141 |
G. Arioli, F. Gazzola, H. Koch, Uniqueness and
bifurcation branches for planar steady Navier-Stokes equations under Navier
boundary conditions, J. Math. Fluid. Mech. 3:49, 2021 PDF file |
142 |
F. Gazzola, An optimal control problem for virus propagation and
economic loss, Rend. Sem. Matematico Univ. Polit. Torino
97, 2021, 1-23 PDF file |
143 |
F. Gazzola, A. Soufyane, Long-time
behavior of partially damped systems modeling degenerate plates with piers, Nonlinearity 34,
2021, 7705-7727 PDF file |
144 |
F. Gazzola, E.M. Marchini, A
minimal time optimal control for a drone landing problem, ESAIM-COCV 27,
2021, 99 PDF file |
145 |
F. Gazzola, G. Sperone, Remarks
on radial symmetry and monotonicity for solutions of semilinear
higher order elliptic equations, Mathematics in Engineering
4(5), 2022, 1-24 PDF file |
146 |
F. Gazzola, C. Patriarca, An
explicit threshold for the appearance of lift on the deck of a bridge, J. Math. Fluid
Mechanics 24:9, 2022
PDF file |
147 |
D. Bonheure, F. Gazzola, I. Lasiecka, J. Webster, Long-time
dynamics of a hinged-free plate driven by a non-conservative force, Ann. Inst. H. Poincaré, Anal. non
Lin. 39, 2022, 457-500
PDF file |
148 |
A. Falocchi, F. Gazzola, Regularity
for the 3D evolution Navier-Stokes equations under Navier boundary conditions
in some Lipschitz domains, Disc. Cont. Dynam. Syst.
42, 3, 1185, 2022 PDF file |
149 |
A. Falocchi, F. Gazzola, Remarks
on the 3D Stokes eigenvalue problem under Navier boundary conditions, Ann. Mat. Pura
Appl. 201, 2022, 1481-1488
PDF file |
150 |
F. Gazzola, G. Sperone, T. Weth, A connection between symmetry
breaking for Sobolev minimizers and stationary
Navier-Stokes flows past a circular obstacle, Appl. Math. Optim. 85, 2022, 1-23
PDF file |
151 |
M. Garrione, F. Gazzola, Symmetry and stability in fluids and structures, appear in “Interactions
between Elasticity & Fluids Dynamics”, EMS ser. Indust.
Appl. Math. PDF file |
152 |
F. Gazzola, M. Jleli, B. Samet,
A new detailed explanation of the Tacoma collapse and some optimization
problems to improve the stability of suspension bridges, to appear in
Mathematics in Engineering PDF file |
153 |
F. Gazzola, V. Pata, C. Patriarca, Attractors
for a fluid-structure interaction problem in a time-dependent phase space, preprint PDF file |