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NOTATIONS

Miscellaneous Symbols

A<B A<CB

A~DB CiB<A<(CyB

R? Euclidean space

span{. ..} linear space spanned by {...}
#(E) cardinality of E

U finite or infinite array

Wavelets & Wavelet Packets

J scale index

k position index

A= (k)

Al=1

©ik() scaling function

Pjk() dual scaling function

Y k() wavelet function

@]k(x) dual wavelet function

W .5 () wavelet packet function

Nonlinear Approximation

Py nonlinear projector
XN continuous nonlinear space
oN discrete nonlinear space
T T
0, weak-{" space
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INTRODUCTION

Three Rings for the Elven-kings under the sky,

Seven for the Dwarf-lords in their halls of stone,

Nine for Mortal Men doomed to die,

One for the Dark Lord on his dark throne

In the Land of Mordor where the Shadows lie.

One Ring to rule them all, One Ring to find them,

One Ring to bring them all and in the darkness bind them
In the Land of Mordor where the Shadows lie.

(J.R.R. Tolkien, The Lord of the Rings)

Adaptive methods for differential equations

The goals of the design of any numerical computational method are
1. reliability
2. efficiency .

Reliability means that the computational error (i.e. the difference between the
exact and the approximate solution measured in a suitable norm) is controlled
on a given tolerance level. Efficiency means that the computational work to
compute a solution within the given tolerance is essentially as small as possi-
ble.

It frequently happens in practical problems that due to the nature of the
data a solution of a differential problem could exhibit some singularities. In
this case to achieve the goals of reliability and efficiency, one would like to in-
crease the accuracy of the approximate solution without using too many addi-
tional degrees of freedom. One way to do this to use a computational method
which is adaptive with feedback from the computational process. Adaptive
procedures for the numerical solution of partial differential equations started
in the late 70’s and are now standard tools in science and engineering: they

3



4 Introduction

consist of a discretization method together with an adaptive algorithm, whose
main features are:

(a) astopping criterium guaranteeing error control to a given tolerance level;
(b) a modification strategy in case the stopping criterium is not satisfied.

A posteriori error estimators [4], [6], [7], [83], [86], [87] are an essential ingre-
dient of any modification strategy and hence of any adaptive procedure. They
are computable quantities depending on the computed solution(s) and data
that provide information about the quality of approximation and may thus be
used to make efficient mesh modification.

The ultimate purpose of adaptive methods, such as adaptive finite element
methods (FEM), is to construct a sequence of meshes that would eventually
equidistribute the approximation errors and reduce, as a consequence, the com-
putational effort. To this end, the a posteriori error estimators are split into
local indicators which are then employed to make local mesh modifications by
refinement and coarsening. This naturally leads to loops of the form

Solve — Estimate — Refine/Coarsen. (0.0.1)

Although these methods have been show to be very efficient from a compu-
tational point of view, the theory describing the advantages of such methods
over their non-adaptive counterparts is still not satisfactory. For results of
this kind, at least in the case of the numerical solutions of elliptic equations
by means of adaptive finite element methods, we refer to [49], [71], [21].

Recently a new class of numerical adaptive schemes has been developed,
namely adaptive wavelet methods.

Adaptive wavelet schemes

Adaptive wavelet schemes for the numerical solution of both linear and non-
linear equations typically rely on the empirical idea that local error indicators
are directly given by the size of the currently computed wavelet coefficients:
a large coefficient indicates important fluctuations of the solution on the sup-
port of the corresponding wavelet, and suggests to refine the approximation
by adding wavelets at finer scale in this region. This idea was first introduced
in [67], for the discretization of initial value problem, then developed in [16],
[65]. Recently it was also applied to stationary problems for which the possi-
bility of computing a residual allows to derive more precise a posteriori error
indicators from the computed wavelet coefficients. In the framework of linear
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elliptic PDE’s, this approach leads to a more rigorous analysis of the wavelet
adaptive strategy, as introduced in [10] and further developed in [36]. In this
respect we also recall multilevel finite element approach [22], [5].

More recently new development on wavelets and nonlinear approximation
[47], [48] have provided new tools for understanding and designing adaptive
wavelet schemes for linear [17], [19], [28], [31] and nonlinear equations [30],
[29], [79], [81], [82], requiring

1. the estimation-evaluation of the action of (linear or nonlinear) operators
on functions expressed in terms of wavelet coefficients

2. the tracking of the significant coefficients as the iterative solution process
progresses.

Such class of adaptive wavelet schemes strongly rely on the sparsity of the
wavelet representation of the solution and of the involved operators allowing
for data compression, as well as the ability to perform accurate numerical com-
putations in the compressed representation.

In this thesis we present and study adaptive wavelet schemes obtained by
coupling iterative algorithms for the solution of linear and nonlinear problems
and the techniques of nonlinear approximation. The approach we follow relies
on a new paradigm which has been put forward recently for a class of linear
problems [80], [31]. This new paradigm is based upon a convergent iterative
scheme written for an equivalent infinite dimensional problem formulated in
the wavelet coordinate domain and, as the iteration progresses, the adaptive
evaluation of the involved linear and nonlinear infinite dimensional operators.

Classical approach & New approach

The new approach to the adaptive solution of well-posed PDE’s has been very
clearly presented in [29]. Let us point out, following such a paper, the differ-
ences between the classical paradigm and the new paradigm to numerically
solving (linear and nonlinear) equations.

The classical approach is concerned with the following issues:
(c.1) variational formulation of the continuous problem;

(c.2) (adaptive) discretization of the infinite dimensional problem so as to
obtain a finite system of algebraic equations;
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(c.3) numerical solution of the finite system of equations, by means of a con-
vergent iterative scheme;

(c.4) if the solution is not satisfactory, then perform a new (adaptive) dis-
cretization.

It is important to remark that performing the above approach yields a se-
quence of finite dimensional problems depending on the (adaptively) chosen
discretizations. As a consequence the convergence of the iterative scheme de-
pends itself on the chosen discretizations.

The new approach is performed by essentially using the same ingredients as in
the classical approach, but ”re-ordered” in a new meaningful way. The basic
steps there read as follows:

(n.1) variational formulation of the continuous problem;

(n.2) transformation of the initial problem into an equivalent infinite dimen-
sional problem in ¢

(n.3) derivation of a convergent iterative scheme for the infinite dimensional
(?-problem;

(n.4) numerical realization of the iterative scheme by an approximate (possi-
bly adaptive) application of the involved infinite dimensional operators
within some strategy of dynamically updated accuracy tolerances.

The main difference between the two approaches is the discretization step.
In the classical approach it is performed (step c.2) at the beginning of the pro-
cedure, by adaptively choosing a discrete space and then solving the resulting
finite dimensional problem, by using an iterative scheme. On the contrary
in the new approach a convergent iterative scheme is written directly for the
oo-dimensional problem and no discrete spaces are fixed in advance. The
(adaptive) discretization is then performed at the very end of the procedure
(step n.4), by an (adaptive) approximate application of the involved infinite
dimensional operators, as the iterative scheme progresses.

It is important to remark that the convergence of the oo-dimensional itera-
tive scheme does not depend on the discretization, as it happens in the classical
approach, but it is based on the ”wavelet preconditioning” of the initial con-
tinuous problem. Wavelet preconditioning relies on the characterization of the
involved functional spaces (typically Hilbert spaces) in terms of the decay of
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the wavelet coefficients, i.e. the norm of a function is equivalent to a weighted
(?-norm of its wavelet coefficients.

In carrying out the new paradigm, for both linear and nonlinear equations,
one has to face different issues, namely:

(a) the design of stable convergent iterative schemes for the co-dimensional
discrete problem

(b) the design of economic approximate application schemes for the involved
linear and nonlinear infinite dimensional operators.

(c) the choice of tolerances in (n.4) to ensure that the perturbed iteration
converges to the correct solution;

(d) the estimate of the complexity of the scheme.

In this thesis we deal with issue (a) (only in the linear case) and issue (b)
(both in the linear and nonlinear case).

It could happen (see e.g. nonconforming domain decomposition and Schur
complement, Chapter 3) that the approximate application of an operator is
equivalent to the approximate solution of an auxiliary problem. In this case
issue (a) reduces to solve the auxiliary problem by using any strategy (e.g.
finite elements) able to give an approximate solution within a prescribed tol-
erance.

The basic scheme

We consider the numerical solution of the problem:
R(u) =0 (0.0.2)

where R : V. — W is a (linear or nonlinear) mapping between two Hilbert
spaces V, W.
Chosen a wavelet basis {t,},, it is possible to transform (0.0.2) into wavelet
coordinates, obtaining an equivalent co-dimensional problem: find u € ¢2 such
that

R(u) =0, (0.0.3)

where R : ¢? — (? maps the sequence of the wavelet coefficients of v into the
sequence of the wavelet coefficients of R(v), while u is the unknown infinite
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array containing the wavelet coefficients of the unknown solution v to the ini-
tial problem (0.0.2).

Remark that problem (0.0.3) is indeed equivalent to problem (0.0.2). No
approximation is performed at this point. According to (n.3) we wish to
devise an iterative convergent scheme for the problem (0.0.3). The schemes
we shall consider will have this form

u"t =" — By R(u") (0.0.4)

where the (infinite, possibly iteration dependent) matrix B,, is yet to be chosen
in order to guarantee the convergence:

(1) for B, = 6Z we will obtain an co-dimensional Richardson scheme,

(2) for B, = [R'(u")]™", where R'(u) is the Fréchet derivative of R at u, we
will obtain an oo dimensional Newton scheme.

In order to arrive at computable versions of the schemes (0.0.5), we will
couple such iterative algorithms with the techniques of nonlinear wavelet ap-
proximation [47], [48], obtaining a class of (adaptive) wavelet methods, whose
general form is

u"th =Py, (0"~ B/R(u")) (0.0.5)

where Py is a nonlinear projector retaining the N largest, in absolute value,
wavelet coefficients. The introduction of the nonlinear projection will result
in an implicit form of adaptivity, in which no specific approximation space is
fixed, but the finite number of degrees of freedom to be used is determined at
each stage by the nonlinear projector itself.

For different choices of the matrix B,, we will obtain different nonlinear wavelet
methods, namely:

(nl.1) for B, = 6Z we will obtain the Nonlinear Richardson scheme (Chapter
3),

(nl.2) for B, = [R'(u")] !, where R'(u) is the Fréchet derivative of R at u, we
will obtain the Nonlinear Newton scheme (Chapters 4).

In this thesis we will perform an analysis of the two schemes, dealing with the
issues of stability and convergence. We will also deal, in a direct way, with the
problem of the evaluation-compression of linear operators and, in an indirect
way, with the same problem for nonlinear operators, resulting in a recipe for
the choice, at each step, of the involved tolerances.



Introduction 9

The outline of the thesis is as follows: in Part I (Chapter 1 and Chapter 2)
we recall for the sake of completeness some results about linear and nonlinear
wavelet approximation: almost all the material of these chapters is borrowed
from [27]. In Part II we design and study adaptive wavelet methods for linear
equations (Chapter 3) and for nonlinear equations (Chapter 4). Finally in
Chapter 5 we discuss adaptive wavelet packets methods for linear equations.
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Wavelets, smoothness &
approximation
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Chapter 1

LINEAR WAVELET
APPROXIMATION

Days passed and the Day drew nearer. An odd-looking waggon laden with
odd-looking packages rolled into Hobbiton one evening and toiled up the Hill
to Bag End. An old man was driving it all alone. He wore a tall pointed blue
hat, a long grey cloak, and a silver scarf. He had a long white beard and
bushy eyebrows that stuck out beyond the brim of his hat. At Bilbo’s front
door the old man began to unload: there were great bundles of fireworks of all
sorts and shapes, each labelled with a large red G and the elf-rune 1. That
was Gandalf’s mark, of course, and the old man was Gandalf the Wizard,
whose fame in the Shire was due mainly to his skill with fires, smokes and
light. His real business was far more difficult and dangerous, but the
Shire-folk knew nothing about it.

(J.R.R. Tolkien, The Fellowship of the Ring)

1.1 Some functional spaces

In this section we want to describe the smoothness spaces that we shall need
in what follows. There are two important ways to describe smoothness spaces:
the first way is through notions such as differentiability and moduli of smooth-
ness, the second way is to expand functions into a series of building blocks (for
instance Fourier or wavelet) and describe smoothness as decay conditions on
the coefficients in such expansions. We shall give both descriptions. The first
is given below, while the second will be given when we discuss wavelet decom-
positions.

The most natural way of measuring the smoothness of a multivariate func-
tion f is certainly the order of differentiability, i.e. the maximal m such that
0%f, |a| = aj+as+...+ay < mis continuous. For Q C R, we define C™((2)
to be the space of continuous functions which have bounded and continuous

13



14 Linear wavelet approximation  Chapter 1

partial derivatives 0%, |a| < m. This space is equipped with the norm

[fllom @ = ilelg|f($)| + ) sup|o*f(),

|a|=m zeN
for which it is a Banach space.

In order to measure the smoothness properties of a function in an average
sense, it is also natural to introduce Sobolev spaces W™P(2) consisting of all
functions f € LP, with partial derivatives up to order m in LP, p € [1,00].
This space is also a Banach space, when equipped with the norm

1w = [ Flleo + flwmos | flwmo = > 10 fllLe,

|aj=m
where we used the notation |- | to denote the corresponding semi-norm. All
the above spaces share the common feature that the regularity index m is an

integer.
How to generalize describing the regularity of a function in a more precise way,
through fractional order of smoothness?

In the case of L?-Sobolev spaces H™ := W™?2 and when 2 = R, we can define
an equivalent formula based on the Fourier transform

1l ~ / (1 + w2 | () P

For a non-integer s > 0, it is thus natural to define the space H® as the set of
all L? functions such that

T / (1 + ]| () P

is finite.

In the case of C™ spaces, we note that sup,cq | f(z+h)—f(x)| < (sup |f'])|h]|
if f € C! for any h € R, whereas for an arbitrary f € C°, sup,.q |f(z + h) —
f(z)| might go to zero arbitrarily slow as |h| — 0. This motivates the def-
inition of the Holder space C°, 0 < s < 1 consisting of those f € C° such
that

Sup |f(@+h) = f(z)] < ClRJ*.
If m < s < m+ 1, a natural definition of C* is given by f € C™ and 0“f €
C* ™ la] = m. It is not difficult to prove that this property can also be
expressed by
sup |ALf(2)] < Clh[%
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where n > s and A} is the n-th order finite difference operator defined recur-
sively by A} f(z) = f(z + h) — f(z) and AR f(2) = AL (AR f(2).

Let us now consider the generalization of ”s order of smoothness in LP”
for s non-integer and p different from 2 and oo. In particular we consider two
classes of function spaces: Sobolev and Besov spaces.

Sobolev spaces WP are defined (if m < s <m+1) by ||fllwse = || f|zr +

|f|quP W].th
« « p
| flwsr := Z / 0 (x) = 0°/(v) dzdy.

|x_y|s m)p+d

la|=m

We refer to [1] for a general introduction.

Besov spaces B, , involve an extra parameter ¢ and can be defined through
finite differences. These spaces include most of those we have listed so far as
particular cases for certain ranges of indices. As we will show in the next
Chapter, these spaces are also produced by general ”interpolation techniques”
between function spaces of integer smoothness, and they can be exactly char-
acterized by the rate of multiresolution approximation error, as well as from
the size properties of the wavelet coefficients. For these reasons we briefly

recall their definitions and properties.

We define the n-th order LP modulus of smoothness of f by

wn(f,1,80)p = sup [[AL fll o0y, ),

Ih|<t

(h is a vector in R of Euclidean norm less than t), where Q,, = {z € Q :
v+ kh € Qk=0,...,n} Forpq2>1 s >0, the Besov spaces B, ()
consists of those functions f € LP(2), such that

(2%wn(f,277)p) 20 € £,

where n is an integer such that s < n. A natural norm for such a space is then
given by

1 fllBs, == IIfllze + | f]Bs |flBs, == 129 wn (f,277),) 50/ ea-

The space B; , represents ”s order of smoothness measured in LP”, with the
parameter ¢ allowing a finer tuning on the degree of smoothness - one has

By, CB,, if g1 < ¢o - but plays a minor role in comparison to s since

B’

s s
Bplq1 szq ,lf S1 Z S92,
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regardless of the value of ¢; and ¢5.
More generally, it can be proved [78] that W*P = B; ,, when s is not an
integer. Indeed the spaces WP are not Besov spaces for m € N and p # 2.

Let us now state the so-called Sobolev embedding theorem [1]:
WPt  Ys2p2 if S1 — S92 Z d(]_/pl — 1/])2),

except in the case where po = +00 and s; — d(1/p; — 1/ps) is an integer, for
which one needs to assume that s; — sy > d(1/py — 1/p2).
In the case of Besov spaces, a similar embedding relation [78] is given by
B;i,pl C B;ilu if S1 — S Z d(]-/pl — 1/p2)

with no restriction on the indices sq, so > 0 and py,ps > 1.

The Besov spaces can also be defined for p and ¢ less than 1. This extension,
which will be of particular importance in the study of nonlinear and adap-
tive approximation, is the source of additional difficulties which go beyond the
scope of this introduction [73].

Let us now discuss the topic of characterizing functional spaces through wavelet
coefficients.

1.2 Wavelets: an overview

We recall some general notations and features for wavelet bases [69], [45]. They
are usually associated with multiresolution approximation spaces {V;};>o:

Definition A multiresolution analysis (MRA) is defined as a sequence of
closed subspaces V; of L*(R), j € Z, with the following properties

1. V5 C Vi,

2. v(x) € V; & v(2x) € Vi,

3. v(z) € Vo e v(x+1) €V,

4. U;’;"joovj is dense in L*(R) and ﬂ;’;"joo‘/j = {0},

5. A compactly support scaling function ¢ € Vi, with a non-vanishing inte-
gral exists such that the collection {p(x — k) : k € Z} is a Riesz basis
of Vp.
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It is immediate to note that the collection of functions {g;,: k € Z}, with
wik(T) = 27/2p(292 — k) is a Riesz basis of V;. Defining A\ = (j, k), |A| = j
and I'; := {(j,k) : Kk € Z}, we have that V} is generated by a local basis
{©a}aer;, whose supports are controlled by

[supp(pa)] < €277, (1.2.1)

if A € I'; and satisfy

#{n el supp(px) Nsupp(p,) # 0} < C, (1.2.2)

with C' independent of A and j.

We will use W; to denote a space complementing V; in V4, i.e. a space

that satisfies
Vim=V,0 W,
where the symbol @ stands for direct sum.

The complement space W}, which contains the ”detail” information needed
to go from an approximation at resolution j to an approximation j+ 1, is gen-
erated by a similar local basis {¢x}xea;, Aj = L1 \ I'y, with ¢y := ¢ () =
212p(20x — k).

The full multiscale wavelet basis {1 }rea, where A := U;>oA;, is a Riesz
basis for L?(R): it allows to expand an arbitrary function f into

F=Ydi,

AEA

where A := U;>¢A; with the convention that we incorporate the functions
{©a}aer, into {1a }aea, and for all sequences {dy}rea we have the norm equiv-

alence
1Y dnllze ~ ) ldaf?, (1.2.3)

AEA AEA
where the coefficients d in the expansion of f are named wavelet coefficients.

In the case of biorthogonal wavelets [32] the coefficients d are obtained by
an inner product dy = (f,1)y), where the dual wavelet 1)y is an L? function. In
the standard biorthogonal constructions, a dual scaling function ¢ and a dual
wavelet 1; exist and generate a dual multiresolution analysis with subspaces
Vj and Wj, such that

V, LW,V LW

Moreover the dual functions also have to satisfy
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where 6, = 1 if [ = 0, zero otherwise.

The dual wavelet system {@A}AEA (risp. the dual scaling system {®)}rca) has
similar local support properties as the primal wavelets ¢, (risp. the primal
scaling functions ¢, ).

It is useful to introduce the following projection operators:

P L* =V
L f = Pif =) (L Bik) @ik
keZ
Qj: L* = W;
CF = Qif =) (i)t
keZ
(1.2.4)
and the corresponding dual projectors:
Py L=V
L f = P =) (i) Bk
keZ
Qi L* > W
= Qi = Z(f; ij,k)lzj,k-
keZ

As far as we have only considered the univariate case; in the standard con-
structions of wavelets on the Euclidean space R, the scaling functions have
the form ¢y = ¢ = 242p(27 - —k), k € Z* and similarly for the wavelets
Ur = Y = 24U%(27 - —k), k € Z¢, so that ['; is naturally viewed as the uni-
form mesh 277Z<. In the case of a general domain € € R, special adaptations
of the basis functions are required near the boundary 02 (see e.g. [68], [33],
[3], [26], [40], [56], [70], [13]).

The practical advantage of such a wavelet setting is the possibility of
switching between the standard discretization of f € V; in the basis {gp,\},\epj
and its multiscale representation in the basis {1y }|x<;, by means of fast O(NN)
decomposition reconstruction algorithms, where N ~ 2% denotes the dimen-
sion of Vj; in the case where (2 is bounded.

An important feature of wavelet bases is the possibility of characterizing
the smoothness of a function f through its wavelet coefficients or the linear
approximation || f — P; f||. Never less in next section we will discuss extensively
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this topic, we would recall here a particular result: for functions of d variables,
Sobolev spaces are characterized by

1A llms ~ NPofIFs + D 2291 f = Pifll7. ~ > 22 Mjdy P, (1.2.5)

3>0 AEA

which reflects the intuitive idea that the linear approximation error decays like
O(27%) or O(N~*/%), provided that f has s derivatives in L.

1.3 Approximation & smoothness

One of the goal of the approximation theory is to relate the analytical prop-
erties of arbitrary functions (in particular smoothness) with the accuracy of
their approximation by simpler functions, such as polynomials, trigonometric
series or finite elements.

As an instances we recall the following result of finite element approxima-
tion in L?-Sobolev spaces: if ) is a polygonal domain, 75, 0 < h < hyez, a
family of regular triangulation with mesh size h, and V), a finite element space
built from 7, that contains polynomials up to degree n — 1 and is contained
in W2, then for s <t < n one has the estimate

inf || f — gllws> < CR5| flwee, (1.3.1)
9EVh

where C' does not depend on f and h. For the multiresolution spaces V; ~
Vi=2-; the above inequality takes the form

inf ||f — gllwsz < C27E9| fl e (1.3.2)
gevj

These results express that a smoothness property implies an approximation
rate. It turns out that a large number of smoothness classes, including L>2-
Sobolev spaces, can be characterized from the rate of decay of the approxima-
tion error in the spaces V}, or also from the summability and decay properties
of the wavelet coefficients.

Let us now focus on the characterization from the approximation error:
given a sequence of approximation spaces V; and introduced

distus (£.15) = inf [1F = gl
we would like to relate the property
diStLp (f, V}) S O(Q_Sj)a

to some classical notion of smoothness satisfied by f. To be more precise we
introduce the following definition
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Definition If X is a Banach space and (V;);>0 a nested sequence of subspaces
of X such that Uj>oV; is dense in X. For s > 0 and 1 < ¢ < oo, we define
the approzimation space A3 (X) related to the sequence V; by

AZ(X) = {f e X: (QdeiStx(f, V}'))jzo S éq}
In the case where X is a Lebesgue space, we use the notation A, = AZ(LP).

Roughly speaking, the space A7 (X) contains those functions such that distx (f, V;) <
O(27%7), with a tuned information provided by the extra parameter ¢. One

can check that it is a proper subspace of X and it is a Banach space when
equipped with the norm

1 fllasx) == 1fllx + 1127 distx (F, V)0l

What we actually want is to prove that under specific assumptions on the
multiresolution approximation spaces, the identity

A, =B, (1.3.3)
holds together with the norm equivalences
1, = [1fllag, and  [fls;, = [flag,- (1.3.4)

Following [27], in order to prove (1.3.3) and (1.3.4) we need direct and inverse
estimates. This is the topic of what follows.

1.3.1 Direct estimates

Let us first collect a preliminary result, originally due to Lebesgue,

Lemma 1.3.1: If P is a bounded projector from a Banach space X to a closed
subspace Y, then for all f € X,

' - <|If - < i _
inf |l = gllx < I = Pfllx < @+ I1PD) inf1If = gllx,

with || P[] = supy ¢y [1Pfllx-
Now we consider the following result about the L stability of the projector
P;: LP — Vj.

Theorem 1.3.1: Let 1 < p < oo. Assume that ¢ € LP and ¢ € L where
1/p+1/p" = 1. Then the projectors P; are uniformly bounded in LP. Moreover
the basis ;. is LP-stable, in the sense that the equivalence

| Z CkPjk

kezd

|Lp ~ 2dj(1/271/p)||(Ck)kezd||gp, (1.3.5)

holds with constants that do not depend on j.
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According to Lemma 1.3.1 it follows that if P; is LP-stable uniformly in j, then
inf [|f — gllze ~ | f = Pifllz», (1.3.6)
gev;

i.e. the error estimate ||f — P, f]|» is optimal in V}.
Now we are ready state a direct estimate for this particular approximation
process [27]:

Theorem 1.3.2: Let 1 < p < oo. Assume that ¢ € LP and ¢ € L where
1/p+1/p' =1. Then we have

1f = Pifllee S 27| flwn, (1.3.7)
where n — 1 is the order of polynomial exzactness in V.

An important variant of the direct estimate 1.3.7 is the Whitney estimate,
which involves the modulus of smoothness [27]:

Theorem 1.3.3: Let 1 < p < co. Assume that o € LP and ¢ € LP where
1/p+1/p' =1. Then we have

||f_ij||Lp Swn(fa 2_j)p7 (138)
where n — 1 is the order of polynomial exactness in Vj.

A simple corollary of the Whitney estimate is a direct estimate for general
Besov spaces [27].

Corollary 1.3.1: Let 1 < p < co. Assume that ¢ € LP and ¢ € LP where
1/p+1/p' =1. Then we have

If = Pifllr S 277 flms,,. (1.3.9)

for 0 < s <n, where n — 1 is the order of polynomial exzactness in Vj.

1.3.2 Inverse estimates

Inverse estimate takes into account the smoothness properties of the approxi-
mation spaces V; [27]:

Theorem 1.3.4: Let 1 < p < co. Assume that ¢ € LP and ¢ € LP where
1/p+1/p' =1 and that p € W™P. Then

1 fllwne < C2%9|flleo, i f €V (1.3.10)

with a constant C' that does not depend on j.
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Another type of inverse estimate involves the modulus of smoothness [27]:

Theorem 1.3.5: Let 1 < p < co. Assume that o € L? and ¢ € L” where
1/p+1/p' =1 and that p € W™P. Then we have

wa(f,t)p < Clmin{1, 28" | flle, if f €V}, (1.3.11)
with a constant C' that does not depend on j.

Our last inverse estimate deals with general Besov spaces of integer or frac-
tional order [27].

Theorem 1.3.6: Let 1 < p < co. Assume that o € L? and ¢ € L” where
1/p+1/p' =1 and that ¢ € B} .. Then

/1

with a constant C' that does not depend on j.

b, SOV fllw i FEV, (1.3.12)

p.a —

By combining the above direct and inverse estimates, we obtain more gen-
eral direct and inverse estimates involving Besov norms on both side of the
inequalities [27]:

Corollary 1.3.2: Let 1 < p,q1,qo < 00 and 0 < s < t. Assume that p € LP
and g € LV If ¢ € B; ., andt <n where n —1 is the degree of polynomial
reproduction in V;, one has the direct estimate

If = Pifllps, <2709 f|p

D,q1 P.qa

(1.3.13)

When s and/or t are integers, these estimates also hold with the classical
Sobolev space WP and/or W' and t up to n.

Proof: [27] First of all we note that:

If = PifllB;

p,q1

< Z | Pisrf — Pif | B

D1’
1>

(1.3.14)

Combining the inverse estimate of Theorem 1.3.6 and the direct estimate of
Corollary 1.3.1, we obtain
| Pivrf = Pif |l B

p,q1

S 2P f — Piflle S 271 Py f - Pifley,,- (1.3.15)

~J

This together with (1.3.14) yields the thesis. The case of classical Sobolev
spaces is treated in the same way, using the direct and inverse estimate of
Theorem 1.3.2 and 1.3.4. O
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Remark 1.3.1: Inequality (1.3.13) tells us that an error estimate O(277¢2))
in B, is achieved by a linear method for functions in B;,p, with 0 < s < t.
We will see in the next Chapter that the same error estimate in B, , can be

achieved by a nonlinear method for less regular functions.

Corollary 1.3.3: Let 1 < p,q1,qo < 00 and 0 < s < t. Assume that p € LP
and g € L. If ¢ € B;m and s < n where n — 1 is the degree of polynomial
reproduction in V;, one has the inverse estimate

£y, S 2 fllss,, i fEV; (1.3.16)

p,q2

When s and/or t are integers, these estimates also hold with the classical
Sobolev space WP and/or W' and s up to n.

Proof: [27] First we note that:

j—1

£l < W Pofllse,, + D I1Psif — Piflls,, - (1.3.17)
=0

P,q2

We clearly have ||[Poflls:, < [Ifllee S [[fllBs,, - For the remaining terms

we combine the inverse elgtézimate of Theorem 1.3.6 and the direct estimate of
Corollary 1.3.1 and obtain
NP f — Pifllee. S 2MPrnf — Pofllee S 2_l(t_s)|f

p,q2 "

By, - (1.3.18)

This together with (1.3.17) yields the inverse estimate of the thesis. The case
of classical Sobolev spaces is treated in the same way, using the direct and
inverse estimate of Theorem 1.3.2 and 1.3.4.

([

1.3.3 Smoothness

Now we are ready to prove [27] the characterization (1.3.3) of the approxima-
tion space A;  in terms of the Besov smoothness:

Theorem 1.3.7: Let 1 < p < oco. Assume ¢ € L? and ¢ € L¥, where
% + z% =1, then we have the norm equivalences

£, ~ 1 Poflee + 11 271Q5 £ N|Le)jz0]les (1.3.19)

and

1 llag,, ~ (11l

D,q’

(1.3.20)

for all t < min{n, s}, where n — 1 is the order of polynomial reproduction of
the Vj space and s is such that ¢ € B, for some qq.
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In order to prove the Theorem we need the following two Lemmas (discrete
Hardy inequalities):

Lemma 1.3.2: If (a;);50 is a positive sequence and b; = 27 3°1_ 2™a,,
with 0 < s < m, one has

12765) 5z 0llea S 1102 a5) 50l ea,

for all g € [1, 0]

Proof:  Let us first consider the case ¢ = +o00. Assuming a; < C,27% we
have b; < C,2m Y~ _ 2m=9t < 2797

For ¢ < 0o, we define ¢' such that % + % =1ande= % > (. Using Holder
inequality we obtain

j q
D (@)1 =y 2l 22’%@) <
>0 >0 =0

!

i j a/q
< e sy [ e

>0 L =0 =0
J

el

>0 =0
— Z (2(m—6)€az)q Z 9—€qj

>0 >t
5 Z (2méae)‘1 .

>0

Lemma 1.3.3: If (a;);>0 is a positive sequence and b; = ij ap, with s >0,
one has -

12705) 5z 0lle S 1102 a5) 50l ea,

for all g € [1, 00|

Proof: The case ¢ = +00 is treated in the same way as in the previous

Lemma. For ¢ < 400, we define ¢’ such that % + % =1 and s’ = s/2. Using
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Holder inequality we have

> @77 =) 22w Zw) <

Jj=0 Jj>0 2]
r a/q’
c S|y (gs'zw)‘I] [Z (M)]
j=0 L >j 124
5 ZQS'QJ [Z (25’lal>q]
J=0 2]
q V4
= Z (25%@4) ZQSI{U
>0 j=0
5 Z (QSgag)q .
>0

Proof of Theorem 1.3.7: [27] Here we shall directly compare the modulus
of smoothness which is involved in the definition of the Besov spaces B;;yq and
the quantities ||Q); f||r». In one direction, from Theorem 1.3.6, we have

distrs (£, V;) < |If = Pifllee S wa(f,277),, (1.3.21)

and thus [|Q; fllzr S wa(f,277),. It follows that the A% norm and the right

hand side of 1.3.19 are both controlled by the B; , norm. In order to prove the
converse result, we remark that the inverse estimate of Theorem 1.3.6 implies
the simpler inverse estimate

wu(f, 1)y < [min{1, 27 }%(| fl|re, if f €V} (1.3.22)

Indeed this property holds for the values t = 27!, 1 > j, by Theorem 1.3.6 and
the other values of ¢ are treated by the monotonicity of w,(f,),.

For f € L?, we let f; € V; be such that

If = fillee < 2distra(f,V5). (1.3.23)
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We then have

J
wn(f) 27]) S wn(fO; 27]) + an(fl+1 - fl; 27j)17 + wn(f - fja 27]‘)1)
=0

j—1

S 279 oller + 27903 2 forn = Fillo] + 1 = filleo

=0

J
< 27| folloe + 270> 2% f = fille]
(=0

J
S 20l + 2 distas (1)L
=0

where we used the inverse estimate 1.3.23.

In order to conclude the proof, we apply Lemma 1.3.2 with a; = distz» (f, V})
and we can thus conclude that the B  norm is controlled by the A° norm.
We can do the same reasoning with P f instead of f; and replace dist Lp( £, Vj)
by ||f — Pjf||re for the characterlzatlon of By ,. Finally, once we note that
lf — P f||Lp <> Qi fll1e, we can use the Lemma 1.3.3 with a; = | Quf]| e
to replace ||f — P; f||Lp by ||Q; fll» and conclude the proof. O

1.4 Approximation & interpolation spaces

1.4.1 Interpolation theory: an overview

In the present section we shall describe a more general mechanism that allows
to identify the approximation spaces A; (X)) with spaces obtained by interpo-
lation theory. Although this mechanism can be avoided when proving (1.3.3)
and (1.3.4), its usefulness will appear in particular in the nonlinear context.

Interpolation spaces arise in the study of the following problem of analysis.
Given two spaces X and Y, for which spaces Z it is true that each linear
operator 7" mapping X and Y boundedly into themselves automatically maps
Z boundedly into itself? Such spaces Z are called interpolation spaces for the
pair X,Y and the problem is to construct and to characterize the space Z.
The classical result in this direction is the Riesz-Thorin theorem, which states
that the spaces LP, 1 < p < oo are interpolation spaces for the pair L', L>.
There are two primary methods for constructing interpolation spaces Z: the
complex method as developed by J.L. Lions and A.P. Calderén and the real
method of J.L. Lions and J. Peetre. We shall focus on the latter approach and
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we give below some of its main features. A detailed treatment can be found
in [9], [8].

Let X and Y be a pair of Banach function spaces. To such a pair, we associate
the so-called K-functional defined for f € X +Y and ¢ > 0 by

K(f,t) = K(f,t,X,Y):= _inf  [llallx +[b]ly]

ac X ,beY,a+b=f
The functional has some elementary properties:

- it is continuous, nondecreasing and concave with respect to ¢.

- if XNY isdense in Y, then K(f,0) := 0. Similarly, if X NY is dense in
X, then the limit lim;, 1o K(f, )/t = 0.

For 6 €]0,1] and 1 < ¢ < 400, we define a family of intermediate spaces
XNY C [X,Y]p, C X +Y as follows: [X,Y]y, consists of those functions
such that

1 llx 6., = 17U (f, )| o, +ooLde/) (1.4.1)

is finite. One easily checks that the above defined intermediate spaces inherit
the Banach spaces structure of X and Y.

In the present context we shall be interested in interpolation between spaces
of representing various degrees of smoothness. In particular we shall always
work in the situation where ¥ C X with a continuous embedding and Y is
dense in X. A typical example is X = L? and Y = WP, In this specific
situation, we write

K(f,1) = inf lf — gllx +tllglly,

and make a few additional remarks:

- the K functional is bounded at infinity since K(f,t) <||f|lx-
Therefore, the finiteness of (1.4.1) is equivalent to

||t_0K(f, t)||Lq(]0,A[7dt/t) < 400, (1.4.2)

for some fixed A > 0 and we can use this modified expression as an
equivalent norm for [X, Y]y ,.

- due to the monotonicity of K(f,t) in ¢, we also have an equivalent dis-
crete norm given by

1 lix 9o, 7= 17K (f, 077)) 0l e,
for any fixed p > 1.
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1.4.2 Smoothness via interpolation spaces

The main result of this section connects approximation spaces A; - and inter-
polation spaces [X, Y]y, by means of direct and inverse estimates [27]:

Theorem 1.4.1: Assume V; is a sequence of approzimation spaces
VicVipC...CcY CX,
such that for some m > 0, one has a Jackson-type estimate
distx (£,V5) = inf [[f = gllx S 27| fly, (1.4.3)
and a Bernstein-type estimate

I£lly S 2™Ifllx if £ €V (1.4.4)

Then, for s €]0,m[, one has the norm equivalence

127K (£,27))jz0lles ~ 1 flx + 1127 distx (£, V5)) jz0les (1.4.5)

and thus [X,Y]p, = A3 (X) for s = Om.

Proof: [27] We need to compare the K-functional K (f,27™/) and the error
of best approximation disty (f, V;). In one direction, this comparison is simple:
forall f € X, g€Y and g; € V}, we have

distx (f,V5) < If = gjllx < If = gllx +1lg = g5llx- (1.4.6)

Minimizing ||g — g;||x over g; € V; and using a Jackson-type estimate, we
obtain

distx (f,V5) S I = gllx +27"7|g]ly- (1.4.7)
Finally, we minimize over g € Y to obtain
distx (£, V}) S K(f,27™). (1.4.8)

Since ||f|lx < K(f,1) (by the continuous embedding of Y into X and the
triangle inequality), we thus have proved that || f||4sx) S I/ llix,v7e.,-
In the other direction, we let f; € V; be such that

|f = fillx < 2distx (f,V}), (1.4.9)
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and we write

K(f,27) < |If = fillx +27™[Iflly

1f = fillx +27™ 1 folly + 1fr = folly + -+ |If5 = fi-ally]

j—1

S = Fills + 271 follx + D 2™ fier — fillx]
=0

<
<

J
< 27 follx + 27 2™ dist (f, V7)), (1.4.10)
=0

where we have used the inverse inequality (together with the fact that f;,; —
fi € Vit1) and the inequality || f[|x < || f[[x + 2distx (f, Vo) < 3| f]lx.
In order to conclude the proof, we first remark that the term 27™7|| f|| x satisfies

12727 fllx)s20ller S 1f1lx (1.4.11)

and we concentrate on the second term. Using Lemma 1.3.2 (discrete Hardy
inequality) with a; = distx (f,V;) allows to estimate the weighted ¢? norm of
the second term and to conclude that || f{|ix,yy,, S If]lasx)- O

The following variant [27] of the previous theorem deals with similar norm
equivalences involving specific approximation operators F;, rather than the
error of best approximation distx (f, V})

Theorem 1.4.2: Assume V; is a sequence of approzimation spaces
ViCVipnC...CY CX,
suppose that we have

1P f = fllx S 271 flly,

for a family of linear operators P; : X — V; which is uniformly bounded in X.
Then, for s = 0m, s €]0,m[, the A;(X) and the [X, Y]y, norms are equivalent
to

1Pofllx + 112V NF = Pifllx)jzolles, (1.4.12)

and to '
1P fllx + [[(27[|Q; £11x)j0llea (1.4.13)

where QQ; = Pj11 — Pj.
Proof: [27] We first consider (1.4.12). In one direction, since

distx (£, V) < |If = Pifllx, (1.4.14)
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and
[fllx < NPofllx +11f = Pofllx, (1.4.15)

we clearly have that the norm of A3 (.X) is controlled by (1.4.12). In the other
direction, we operate as in the inequality (1.4.10) in the proof of Theorem 1.4.1:
replacing f; by P;f proves that the [X,Y]y, norm is controlled by (1.4.12).

We then turn to (1.4.13). In one direction we have

1Qifllx < If = Pisifllx +1If — Pifllx, (1.4.16)

which shows that (1.4.13) is controlled by (1.4.12). In the other direction, we
write

I1f = Pifllx <> 1Qufllx- (1.4.17)

123

Using Lemma 1.3.3 (discrete Hardy inequality) with a; = [|Q;f]|x allows to
conclude that (1.4.12) is controlled by (1.4.13). O

Now we want to prove the equivalence between A° and B and the norm
equivalence 1.3.4, by using the general interpolation results obtained above.
The key observation is that Besov spaces are obtained by the real interpolation
applied to Sobolev spaces. For example the following result [62] is true on
general Lipschitz domains €2 € R:

Theorem 1.4.3: It holds
Bliq = [Lp= Wn’p]a,(h

with s = On, 0 €]0,1].

1.5 Wavelets & functional spaces

In this section we show how a large number of smoothness classes can be
characterized from the summability and decay properties of the wavelet coef-
ficients.

1.5.1 Besov spaces with p > 1

The following result gives an equivalent norm of Besov spaces B, , p,q > 1, in
terms of the wavelet coefficients, by using characterization (1.3.19) (obtained
through the ”direct” way) or equivalently by using characterization (1.4.12)
(obtained through the “interpolation approach”):
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Corollary 1.5.1: If f =3, cxths, then we have the norm equivalence

||f||Bf),q ~ || (25]211(2 p)JH(C)\))\EA]-”)j ||gq, (151)
under the assumptions of Theorem 1.3.7.

Proof: It suffices to remark that for j > 0, we have the equivalence

1Q; fllLe ~ 2d(1/2_1/p)j||(CA)/\eAj||€P, (1.5.2)
by the same arguments as for the proof of Theorem 1.3.1. a

This last result also shows that wavelet bases are unconditional bases for all
the Besov spaces in the above range: the convergence of the series holds in the
corresponding norm without being affected by a rearrangement or a change of
sign of the coefficients, since it only depends on the finiteness of the right-hand
side of (4.2.4).

1.5.2 Besov spaces with 0 < p < 1

So far, we have only considered values of p in the range [1, co], whereas Besov
spaces can be defined for 0 < p < 1. In particular the case 0 < p < 1 turns
out to be crucial for nonlinear approximation. Here we sketch, following [27],
how to extend the above results to the case 0 < p < 1.

A first result is that, although we do not have the LP boundness of P; we
still have some LP stability for the scaling function basis. Here we continue
to assume that (p, @) are a pair of compactly supported biorthogonal scaling
functions, with ¢ € L" and ¢ € L", for some r > 1, 1/r' +1/r = 1.

Theorem 1.5.1: Assuming that ¢ € LP, for p > 0, one has the LP stability
property

1> crnillr ~ 290272 (c)eller, (1.5.3)
k

with constants that do not depend on j.

An immediate consequence of Theorem 1.5.1 is that we can extend the inverse
inequalities of Theorems 1.3.5 and 1.3.6 to the case p < 1.

Theorem 1.5.2: Under the assumption of the Theorem 1.5.1 and if p € By,
for some q > 0, one has

wn(f, 1), < Clmin{1,t27}"||fl|lr» if f € V. (1.5.4)
If ¢ € B, , one has

/1

83, S2Nfllee if fEV (1.5.5)
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If we want now to extend the Whitney estimate (1.3.8) to the case p < 1, we
are facing the problem that LP functions are not necessarily distributions and
that the operator P; is not a-priori well defined in these spaces (unless we put
restrictions on s). One way to circumvent this problem is to consider the error
of best-approximation distz»(f, V;) rather than ||f — P;f||re.

Theorem 1.5.3: Under the same assumptions as in Theorem 1.5.1, we have
distrs (f,V;) S wa(f,277),, (1.5.6)
where n — 1 is the order of polynomial ezactness in Vj.

By using Theorems 1.5.2 and 1.5.3 it is possible to extend [27] the identity
A, = B, , to all possible values of p and ¢:

Theorem 1.5.4: Assuming that ¢ € LP, for p > 0, we have the norm equiv-
alence

1 g, ~ (1L, (1.5.7)

for all t < min(n,s), where n — 1 is the order of polynomial reproduction of

the Vj spaces and s 1s such that ¢ € B, ., for some qo > 0.

If we now want to use the specific projectors P; or the wavelet coefficients to
characterize the B} -norm for p < 1, we are obliged to impose condition s such
that P;f will at least be well defined on the corresponding space. We shall
now see that such characterizations are feasible if s is large enough so that
B, , is embedded in some L", r > 1. By using the above results it is possible
to prove [27] the following result which extends the characterization of Besov
spaces to the case 0 < p < 1:

Theorem 1.5.5: Assume that ¢ € L™ and ¢ € L for some r € [1,00],
1/r+1/r" =1 or that ¢ € C° and ¢ is a Radon measure, in which case we
set r = 00. Then, for 0 < p < r, one has the norm equivalence

1f11Bs, ~ [[Pofllee + 12701Q; flI o) j20lee, (1.5.8)

for all s > 0 such that d(1/p — 1/r) < s < min(t,n), where n — 1 is the order
of polynomial reproduction in V; and t is such that ¢ € BIE:QO’ for some qy. If
[ =2"sen U is the decomposition of f into the corresponding wavelet basis,
we also have the norm equivalence

1035, ~ (2925 Pl eahren ) e

Jz

under the same assumptions.
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1.5.3 Characterization of negative smoothness

For s < 0, Besov spaces are usually defined by duality for p,q > 1:

B, = (B,)", (1.5.9)

g
with 1/p+1/p' =1 and 1/g+ 1/¢' = 1. The characterization of such dual
spaces relies on the characterization of the corresponding primal space by the
dual multiscale decomposition:
Theorem 1.5.6: Assuming that the dual projectors are such that
1 lBs, ~ N ES fllze + 127 1Q flle)j>olles (1.5.10)

for some s > 0 and p,q > 1, we then have
1z, ~ 1P f e + 12 NQ5 Ml )izl (1.5.11)
with 1/p+ 1/p" = 1. We also have the norm equivalence
7 lle, ~ 12792502 ), )yl (15.12)

if f= Z)\eA SY

1.5.4 The Hilbert case

In the particular case of Sobolev spaces, we have thus proved the norm equiva-
lence for a regularity index which is either strictly positive or strictly negative:

1F e ~ 1P Il + D 291Qs 17 ~ D 22[ea (15.13)

>0 AEA

The above equivalence for s = 0, which corresponds to L? means that {1 }xea,
and by duality {1, }xca, are Riesz bases for L*:

1£llze =) leal? = > Jésl? (1.5.14)

AEA AEA

with &, = (f, ). Different methods exist to prove norm equivalence (1.5.14):
by using for example interpolation theory [27], or stable multiscale transfor-
mations [38].
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1.5.5 Characterization of L” spaces

We know that L? identifies with B3 ,. By using elementary interpolation prop-
erties of weighted (7 spaces [27], one obtains the norm equivalence

1Fllsg,, ~ NP7 (ex)ren, lew) i 1lles, (1.5.15)

provided that the wavelet basis allows to characterize By , and B, ¢ for some
€ >0 and q,q > 0.

However we cannot identify LP with Bg,q, for any g > 0, if p # 2. This reflects
the fact that LP spaces do not belong to the scale of Besov spaces when p # 2.
Concerning such LP spaces, we can formulate two basic questions:

1. does the wavelet expansion of an arbitrary function f € LP converge
unconditionally in LP?

2. is there a simple characterization of L? by the size of the wavelet coeffi-
cients?

The answer is negative for L™, since it is not separable, and for L!, which is
known to possess no unconditional basis. For the case 1 < p < 0o, a positive
answer to the first question is provided by the real value theory developed by
Calderon and Zygmund in order to study the continuity properties of opera-
tors.

Finally the characterization of L” norms from the size properties of the wavelet
coefficients is also possible for 1 < p < oo, by means of a square function,

defined for f =", , cxthy by

Sf@) =) lealPloala) )72, (1.5.16)

AEA

Clearly we have ||f||z2 ~ ||Sf||L2. Moreover, using the classical Khinchine
inequality [76] allows to prove [27] the following norm equivalence:

[fllze ~ 1S Fllee (1.5.17)

for 1 < p < o0.

1.56.6 Bounded domains and boundary conditions

It is possible to extend the results of previous sections, by characterizing func-
tions spaces related to a bounded domain €2 C R, with prescribed boundary
conditions, in terms of their multiscale decomposition. Following [27] we fix
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some general assumptions on our domain: €2 should have a simple geometry,
expressed by a conformal partition

into simplicial subdomains: each S; is the image of the unit simplex
S={0<z+...+x4 <1},

by an affine transformation. By “conformal” we mean that a face of an S,
is either part of the boundary I' or coincides with a face of another S;. We
also assume that €2 is connected in the sense that for all j,l € {1,...,n} there
exists a sequence ig, ..., %y, such that g = j and i, = [ and such that S,
and S;, ., have a common face. Clearly, polygons and polyedrons fall in this
category. More general curved domains or manifolds are also concerned here,
provided that they can be smoothly parametrized by such a simple reference
domains.

We denote by C*(I', m) the space of smooth functions defined on €2 which van-
ish at order m on I'. This means that f € C*(I',m) if and only if f € C*(Q)
and |f(z)| < C[dist(z,T)]™"'. We then define the spaces W*?(T', m)(resp.
By (L;m)) as the closure of C®(I',m) in W*P(resp. Bj ). We have the
following result [27].

Theorem 1.5.7: Assume that ¢ € L™ and ¢ € L" for some r € [1,00],
1/r+1/r" =1, or that ¢ € C° and ¢ is a Radon measure, in which case we
set r = 0o. Also assume that V; reproduces polynomials of degree n — 1 with
flatness m at the boundary and that ¢ € B, . Then for 0 <p <, one has
the norm equivalence

1f1lBs, ~ 1Pof e + 1271Q; fll2) jzollea, (1.5.18)

forall f € B (T, m) witht > 0 such that d(1/p—1/r) <t < min(s,n) and t—
1/p is not an integer among 0,...,m. If f =7, cxtby is the decomposition
of f into the corresponding wavelet basis, we also have the norm equivalence

sjod(—1)j
71135, ~ 11 (272" easen ) e

under the same assumptions.

Finally we note [27] that also the characterizations of negative smoothness and
L? spaces extends to the type of domains that we are considering here.
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NONLINEAR WAVELET
APPROXIMATION

"Well!” said Gandalf at last. ”What are you thinking about? Have you
decided what to do?”. 7I suppose I must keep the Ring and guard it, at least
for the present, whatever it may do to me” answered Frodo. ”But I feel very
small, and very uprooted, and well — desperate. The Enemy is so strong and
terrible”.

In the black abyss there appeared a single Eye that slowly grew, until it filled
nearly all the Mirror. The Eye was rimmed with fire, but was itself glazed,
yellow as a cat’s, watchful and intent, and the black slit of its pupil opened on
a pit, a window into nothing.

(J.R.R. Tolkien, The Fellowship of the Ring)

Wavelet bases allow an efficient representation to characterise isolated sin-
gularities of functions, thanks to a particularly good location both in space and
frequency of each element of the basis. This amounts to say that the decom-
position of a function with isolated singularities is lacunary, in the sense that
very few coefficients of its wavelet decomposition are non negligible. Then,
given such a function, a simple strategy for building a compressed approx-
imation is possible by getting rid of the coefficients that are smaller than
a prescribed threshold, or equivalently by choosing the N largest, in abso-
lute value, coefficients. In other words for functions which are not uniformly
regular, possibly better approximations are obtained by choosing the approx-
imation space depending on the function itself. This means the we look for a
space Vg := Span{t, : A € E}, where E = E(f) C A is a finite subset of
indices which depends on the function f itself, and for an approximation f to
f belonging to Vg. Typically E could result to be the union of two subsets of
indexes: the first allowing a coarse approximation of f and the second aiming
to resolve the local singularities of f. If the target function f is smooth on
a region we can use a course resolution on that region, by putting terms in

37
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the approximation corresponding to low frequency-terms. On regions where
the target function is not smooth we use higher resolution, by taking in the
approximation more wavelet functions corresponding to higher-frequencies.
The questions that arise from these observations are:

(i) How does one practically build the set F(f) and the approximation f?

(ii) Is there a precise characterization of the functions that can be approxi-
mated with a given rate of approximation, by this adaptive strategy?

Let us introduce the space
Sv={)_aa: #(E) <N}, (2.0.1)
AeE

of all possible N-term combinations of wavelets, and the error of best N-term

approximation in some norm || - ||y defined by
distx(f,Xn) = inf inf — c . 2.0.2
x(f,En) BeA <N (o I/ Z Al x (2.0.2)

A€E

It is well understood that ¥y is not a linear space: if f and ¢ are in Xy we
can only conclude that f+ g € Yon
Suppose now one has access to the wavelet expansion f = > ., cx¥y of
the function f to be approximated: a natural N-term approximation in X is
provided by the choice
fn=_ e, (2.0.3)

AEEN

where Ey = En(f,X) is the set of indices corresponding to the N largest
contributions [|cxt)y||x. Then, we shall see that for several interesting choice
of the space X, we have

Nf— fullx S distx(f, Xn), (2.0.4)

i.e. a simple thresholding of the largest contributions in the wavelet decom-
position provides a near optimal N-term approximation.

2.1 Nonlinear approximation in L2

Let us consider for the moment N-term approximation in the L?-norm: we are
interested in the behaviour of distz2(f, ¥y) as N goes to infinity, where Xy is
defined as above. In order to simplify this example, we assume that {¢)}xea
is an orthonormal basis for L?. Thus any f € L? can be decomposed into

f= ZC,\%\, o = (f, ),

AEA
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and we can define the set Ay = Ay(f) C A of the N largest coefficients of f,
i.e. such that #(Ay) = N and

AE AN,)\, §é Ay = |C)\I| < |C)\|. (211)

If the modulus of several coefficients of f take the same value, we simply
take for Ay any of the sets of cardinality IV that satisfies 2.1.1. From the
orthonormality of the basis, we clearly have

1/2
distz>(f,5n) = If =Y el = | Y lal*] - (2.1.2)
A AEAN

Let us now consider the spaces B, ,, where s > 0 and ¢ is such that 1/q =

1/2 + s/d. We assume here that B; is characterized by (4.2.4):

L

sjod(=1);
171135, ~ 11 (272°4 P easen,ll)

For such indices, we note that this equivalence can be simplified

£ 1Lz, ~ ll(ex)realles- (2.1.3)

A first immediate consequence of (2.1.3) is the embedding of B} in L?, since
(% is trivially embedded in /2. Note that that such an embedding is not com-
pact: the canonical sequence (sy,)n>0 = ((dnk)k>0)n>0 is uniformly bounded in
¢ but does not contain any subsequence that converges in £2.

In order to characterize Besov spaces in terms of the L2-error of nonlinear
wavelet approximation, we follow the same strategy as in the linear context
and we try to obtain three ingredients: a direct estimate, an inverse estimate
and a result of interpolation theory.

If we now define by (¢,)n,>1 any rearrangement of the coefficients (cx)aea
with decreasing moduli, i.e. such that |c,;1| < |c,|, we also have

nleal” <Y el ~ |1 F 1% (2.1.4)

k>1

which yields
leal SN fllsg,n 0 (2.1.5)
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Taking the decreasing rearrangement ¢, to be such that {¢, : n < N} =
{ex: A€ Ay}, it follows that we have

dist2(f,Sn) = If = D exthallre

AEX N

1/2
n>N

S NVEA £

~Y

We thus have obtained a Jackson-type estimate

dist,>(f,Sn) < N1/ f]

| (2.1.6)

with respect to the non linear spaces X .
On the other hand, if f € ¥y, we also have by Holder inequality

111z, S Heaaealls < NV (ea)sealle = N7 fllze,  (2.1.7)

i.e. a Bernstein-type estimate.
The equivalence (2.1.3) also shows that for 0 < ¢ < s and 1/r =1/2+1t/d, we
have the interpolation identity

BTt‘,T‘ = [L27 B;,q]e,Ta 0 - t/sy (218)

which is a simple re-expression of [¢2, 1]y, = ("

Now if we were in the linear context we could characterize functions spaces
by the error of linear approximation. It turns out that a similar result as

in linear case also holds in the present nonlinear context using the following
Theorem [27].

Theorem 2.1.1: Assume that X and Y are quasi-normed spaces and that
Si,j >0, is a sequence of non linear approzimation spaces

S;CSjpC...CcYCX, (2.1.9)
such that for some m > 0, one has a Jackson type estimate
distx(£,5;) = Inf |f =gl S 27| flly, (2.1.10)
and a Bernstein-type estimate

1flly S2™fllx if f€S;. (2.1.11)
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Moreover assume that there exists a fixed integer a such that
Sj + Sj C Sj_|_a, J=>0. (2.1.12)
Then, for t €]0,m[, one has the norm equivalence

1K (f,27™))50llen ~ [1f|x + 12 distx (£, S)))j50ller (2.1.13)
and thus [X,Y]p, = AL(X) fort = Om.

From the monotonicity of the sequence distz2(f, Xy), we have the equivalence

> [20tdistra(f, ;)] ~ Y NN dist o (f, D))" (2.1.14)

Jjz0 N>1

The finiteness of the above quantities for ¢ < oo is a slightly stronger property
than distz2(f, ¥y) < N~¥¢ which was initially obtained. According to the
above theorem, with X = L? and Y = B; ., this last property characterizes
the intermediate space

[L?, B; Jo.00 = A (2.1.15)

2,007

with ¢ = fs, which cannot be thought as a Besov space. One can check that
this space is also characterized by the property that (c))aea belongs to the
weak space /], i.e.

#{NeA: |a| >} <Ce (2.1.16)

Hence the property f € By, 1/r =t/d+ 1/2 is almost equivalent to the
rate dist,>(f, ¥y) < N~*/? while the exact characterization passes through

the stronger property

> NTUNYdistpe(f, Sx)]" < oo,

N>1

or the weak space £;,.

2.2 Nonlinear approximation in B;p

It is not difficult to extend the above results to the case where the error
is measured in more general Besov space of the type B; . Following [27]
we cancel the orthonormality assumption which is irrelevant at this stage of
generality and we prove the following result.
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Lemma 2.2.1: Let assume that B, , admits a wavelet characterization of the

type (4.2.4). If f =3 5 cp CAUn, then
f - Z aallps, S distps (f,Xn), (2.2.1)

p,p N
AEAN

where Ay = Ay(f, B;,p) is the set of the indices corresponding to the N largest
Bs,, or equivalently the N largest 2(s+d/2=d/p)Nl| ¢, |,

contributions ||cax|

Proof: [27] The norm equivalence (4.2.4) shows that |[1x||ps  ~ 2(s+d/2=d/p)IAl,
It can thus be reformulated as

1/]

s, ~ I([[extnllss, )aealler- (2.2.2)

Clearly the N-term approximation ZAeAN c\y» minimizes the distance be-
tween f and Xy when measured in this equivalent norm for By ,. It is thus a
near minimizer for the B, , norm in the sense of (2.2.1). O

Now we are ready to state and prove [27] the following result dealing with
the characterization of Besov spaces B, with 1/¢ = t/d +1/2 in terms of
the nonlinear approximation error measured in the norm of B & with 1/p =

P
s/d+1/2

Theorem 2.2.1: Assume that the spaces B}, t —s = d(1/q — 1/p) admit a
wavelet characterization of the type (4.2.4) for t € [s,s'], s > s. Then for
t€ls,s'[,t —s=d(1/q—1/p), we have the norm equivalence

1Fllze, ~ N fllsg, + 12D dists, (£, S7)j20les- (2.2.3)

Proof: [27]Ift > s and t — s = d/q — d/p, the norm equivalence (4.2.4) can
be rewritten as

||f||B,§,q ~ [[(llextal B;,,p),\eAHeq, (2.2.4)

where ¢, are the wavelet coefficients of f. We can then proceed in a similar
way as in the particular case of approximation in L?. Denoting by (£,)n>1
the decreasing rearrangement of the sequence ([[exta| s, )aen, we remark that
since

net < 3t S A1, (225)

k>1

we have the estimate
en S| fll e, (2.2.6)
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Denoting by Ay a set of indices defined as above, we obtain

distps (f,Xn) < |If - Z x|

AEAN

S (e

n>N
S NV |y,

s
BPaP

We have thus established the Jackson type estimate
distps (f,Sn) < N £l (2.2.7)
If f € Xy, then using Holder inequality and (2.2.4) yields

115z, S NPl (llextinllsg, aealles = N £l (2.2.8)

i.e. the corresponding Bernstein-type estimate.

Finally it remains to observe that Besov spaces B, , t —s = d/q—d/p are
interpolation spaces: for s <t < s, t—s=d/q—d/pand s' —s =d/p' —d/p,
we have the interpolation identity

B, =B, By ylog, 0=(t—s)/(s—s), (2.2.9)
which is a re-expression of [¢7, (*']y, = (9, with 1/p = s/d + 1/2 and 1/p’ =
s'/d+1/2.

By Theorem (2.1.1), with X = By and Y = B} , we thus obtained the norm

4,9’
equivalence (2.2.3). O

2.2.1 Linear versus Nonlinear

Let us consider (2.2.7). The analog linear result (1.3.13) tells us that the
same error rate O(N~(=9)/4) in B 'is achieved by a linear method (i.e. with
N = N; = dim(V;)) for functions in B} ,, which is a smaller space than B .
It should be noted that, as ¢t becomes large, the functions in the space B;,p be-
come smooth in the classical sense, while B;yq might still contain discontinuous
functions.

2.3 Nonlinear approximation in L”, 1 < p < 00

It is important to note that the result of previous section are easy to prove,
due to the simple link existing between Besov spaces and P spaces through
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wavelet decomposition. The study of non linear approximation in LP norm is
more difficult since we cannot identify L” to a Bg’p for p # 2. Anyway switching
from Bgyp to LP does not seriously affect the results of N-terms approximation
for 1 < p < 0.

Following [27] we first recall two lemmas, due to Temlyakov [77], that allow
to estimate the LP norm of a linear combination of wavelets according to the
size of the coefficients:

Lemma 2.3.1: Let 1 < p < 00 and {{}ren a wavelet basis constructed from
scaling functions in LP. If E is a finite subset of A of cardinality #(E) < oo,
then

13- extallie < CHE) sup st e, (23.1)

AEE

where C' is independent of #(E).

Lemma 2.3.2: Let 1 < p < oo and {{a}rea (resp. {Ua}rea) a (resp. dual)
wavelet basis constructed from scaling functions in LP (resp. in L¥ | with 1/p+
1/p=1). If E is a finite subset of A of cardinality #(E) < oo, then

1Y " extalloe = CH#(E)? inf [lexiha e, (2.3.2)
AEE

where C' is independent of #(E).

Using the above two Lemmas it is possible to prove [77] that a near-best N-
term approximation in L” can be achieved by a simple thresholding procedure:

1f = Z axthal|r S distre (f, X)),
AEAN

where Ay is the set of indices corresponding to the N largest contributions
llextal| e

2.3.1 Jackson and Bernstein result in L, 1 < p < o0

Now we prove [27] Jackson and Bernstein estimate for N-term approximation
in LP.

Theorem 2.3.1: Let 1 < p < oo and {{¥r}rea a wavelet basis constructed
from scaling functions in LP. Assuming that the space B; , 1/q = 1/p+s/d
admits a wavelet characterization of the type (4.2.4), we have the Jackson
estimate

distre(f,Sn) S N fllss.,» (2.3.3)

and for f € X, the Bernstein estimate

1Flls;,, < N4IFl| e (2.3.4)
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Proof: [27] Let f € B, ,. We remark that the norm equivalence (4.2.4) also
writes

1 fllBs, ~ Il(llextoallze) reallea- (2.3.5)

In particular, we have
#FN: leatallee > e} S 67q||f||qu’q. (2.3.6)

It follows that there exists a constant C' > 0 (depending on the constant in
the equivalence (2.3.5)), such that if we define

Aj={x: 277 fllss, < lextalle < C270- D fllge },  (23.7)

9,9 —

we then have .
#(A4;) < 2. (2.3.8)

From (2.3.1) we can evaluate the L” norm of Ty, f = ZAeAJ_ ey by

174, e S 2790911 |y A AP < PO ]|, (2.3.9)

~J

Now define B; = U/_j A;. By (2.3.8), we have #(B;) < 2/. For S; := Sy, we
thus have

diStLp(f, S]) < ||t—Tij||Lp
< ST e

123
< Z 2l1/p=1/4)|| 1|
1>j
S 2l |

s
Bq,q

5y = 27070 1

By the monotonicity of distz»(f, Sy), this implies the direct estimate (2.3.3)
for all N.

s .
B‘Iaq

In order to prove the Bernstein estimate, we distinguish two cases: p > 2
and p < 2.
If p > 2, we have

£y, ~ Nllexallze)realler S NS e (2.3.10)

One way of checking (2.3.10) is to use an interpolation argument: the property
holds when p = 2 for which one actually has the equivalence || f||go, ~ [|f]|z2
and p = oo since

lextallzee S 2M 2 ex| = 2X2((f,00)] < ]| (2.3.11)
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In the case where p < 2, let f =), ey € Ey. We then estimate ||f||Bg,q
as follows:

1A llBs, S D leatnlld

AEE

=) _leallalallvall "

AEE

/Z|0>\| |y [P24L/ 2= 1/P)a=P)A

AEE

S [ kol s

< / 1S f ()] Ris ()

where we applied Holder’s inequality on sequences to obtain the last line. Here
S f(z) is the square function and Rg(z) can be estimated as follows:

(2-q)/2
Rp(x) = (Zpd(l/p—l/mw|¢A(x)|]z<p—q>/(2—q>)
AeE
< ( Z 22ﬂl>\|(pq)/(2pqp)>(2_q)/2
AEE:"/))\(I)#O
< 9i(@)d(1=q/p)

~J

where j(z) = max{j > —1 : 2 € supp(¢,), for some A\ € E;}. Using
Holder’s inequality, we thus obtain

by S ISTILE [ 20¥da) =
S 17 3 ()20

j>—1
S Mfllea[ Y NI
jz-1

= NY) f s,

/]

where Q; :={z € Q: jx)=j}. O

2.3.2 The main result

By using Theorem 2.3. 1 and interpolation properties for the AJ = spaces and
for the Besov spaces B; , 1/q¢ = 1/p + s/d, it is possible to prove [27] the

analog of the Theorem 2.2.1 for Besov spaces B , with s < 1:
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Theorem 2.3.2: Let 1 < p < 0o and {Pr}ren a wavelet basis constructed
from scaling functions in LP. Assuming that for 0 < s < t the space B ,

1/q = 1/p + s/d admits a wavelet characterization of the type (4.2.4), then
one also has the norm equivalence

/]

Remark 2.3.1: We refer to [27] and references therein for the cases p < 1
and p = oo which are not covered by the results of this section.

By, ~ 1 flle + (27 dista (£, 55)) jz0lles- (2.3.12)

2.4 Nonlinear approximation of sequences

In this section we re-obtain explicitly a result of nonlinear approximation in
the Sobolev space H?, by combining nonlinear approximation of sequences and
the norm equivalences in terms of the summability properties of the wavelet
coefficients.

We saw that in nonlinear approximation in a wavelet framework, a func-
tion u € L*(Q2), whose wavelet decomposition is u = Y, uxt)y, can be approx-
imated by a lacunary series; that is by an approximation v to u, belonging to
the non linear space

Yy ={v= Zv,\w,\ : v={urlrer €E0n}, (2.4.1)

AEA

containing all the functions of L?*(f2), whose wavelet coefficients belong to the
set

oy ={vel?(N): #{\:vy#£0} <N}

of sequences with at most NV elements different from zero. The set X contains
the functions of L?(Q), which can be expressed as a linear combination of at
most N wavelets. A nonlinear projector

Py : L*(Q) — Sy

can be built as follows: given u =), u\t, let us sort the sequence {|uy|}rea
in decreasing order. We denote {|u)|}ren the coefficient of rank k:

[urky] > Jurg+1)|,  with & > 0.

Hence the image Py (u) is defined by:

N

Py(u) = Z U () PA(n) »

n=1
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that is only the IV greatest (in absolute value) coefficients of u are retained.
By abuse of notation we will also indicate by

]P)NI£2—>O'N

the operator associating to the sequence u = {u,}, the coefficients of the
function Pn (D, uxtpy). The accuracy of the corresponding approximation is
directly related to ¢, regularity of the sequence of coefficients of u, as stated
by the following theorem [47], [48]:

Theorem 2.4.1: Let u = Y,y uxthn. If u = {ur}x € £y, with 7 such that
0 <71 <2, then

. _(1_1
lu —Pyulle $ inf [Ju—wlle SN E2|ul,
weoN

where the implicit constants in the bounds depend only on T.

Proof: We sketch the proof. We have

#{ANeA: |e| >} < MeT.
Let Aj:={\: 27 <Je\| <277t} Then for each k =1,2,..., we have

k
D #A < CM2T (2.4.2)

j==o0

with C' depending only on 7.

Let Sj i= Yyeq, extn and Ty = 320 ;. Then Ty € Ly with N =
CM2*". We have .

If = Tellze < D I1Sillze. (2.4.3)
j=k+1

We fix j > k and estimate [|S;]|z2. Since |ey] < 277F for all A € A;, we

have from Lemma 2.3.1 and (2.4.2),
I;l1> < C277#A)? < M2,

We therefore conclude from (2.4.3) that
||f _ Tk||L2 < CM1/2 Z 2j(7/271) < OM(MI/T2]€)T/271,
j=k+1
because 7/2 — 1 < 0. In other words for N ~ M2*" we have

inf ||u— wl||p < CMNY27VT,

wWEON
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To conclude it is sufficient to recall the near optimality of the nonlinear pro-
jector Py in L2
lu—Pyulle S inf [Ju—wle.
weoN

O

In particular, as ¢ C ¢;,, if 7 is such that % =<+ %, using norm equivalence
(4.2.4), we obtain

I ZU,\%HB:,T(Q) >~ ||ul|er (2.4.4)
A

and from Theorem 2.4.1 we recover the above result of nonlinear approximation
in L?: if u belongs to BL_(Q), with 7 such that I =% 4 3, then

. (i1
inf flu—wllixe < llu—Pyulle S N2yl

weEX N

By (Q)-

In other words, once we normalise in L?(£2) the wavelet basis {1/}, the natural

functional setting of nonlinear approximation in L?(2) is the scale of Besov
spaces B] (Q).

2.4.1 Nonlinear approximation in H*

Let us now consider a rescaled version {4x}x of the wavelet basis {1}, where
Yy = pI%Yy, for A € Aj. If 7 is such that % =+ %, from norm equivalence
(4.2.4) we obtain:

1D uxthall pres oy = Iluller. (2.4.5)
A

Applying now Theorem 2.4.1 and norm equivalence (1.5.13) for Sobolev spaces
to the normalised sequence u, we obtain the following result of non linear
approximation in H*(2):

Corollary 2.4.1: Let u € BT7(2), with T such that 1/7 =r/d+1/2, then

. —(i_1
lu=Pyullmso) S inf [lu—wllm@ SN D ul| petr (.
N

where the implicit constants in the bounds depend only on 7.

That is when we consider nonlinear approximation in H*({2) the natural func-
tional setting is the scale of Besov spaces BJ**(€2), where 7 is defined by the
relation 1 = % + .
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2.5 Towards adaptive wavelet methods

Wavelet bases are being increasingly used in the numerical solution of partial
differential and integral equations. There are many aspects in a discretization
procedure for such equations that can benefit from the features of these bases.
Wavelets share with other multilevel methods the capability of easily precondi-
tioning the discrete realizations of symmetric positive definite operators. More
typical of wavelets is their orthogonality to certain classes of smooth functions
(e.g. polynomials), a feature that can be exploited in the compression of dense
matrices and, in a more general context, in the design of adaptive discretiza-
tion strategies. The finite-dimensional space, which is used in a Galerkin-type
approximation, is adaptively constructed by including in it precisely those
wavelet basis functions that have the potential of representing the most sig-
nificant structures of the solution. From this point of view, adaptive wavelet
methods can be viewed as meshless methods or space refinement methods, with
a highly flexible mechanism for adding and removing degrees of freedom. Non-
linear approximation provides a natural benchmark for an adaptive scheme:
if || - ||x is the norm where we measure the error between the solution u of a
PDE and its numerical approximation and if it holds ||u — uy||x < N % for a
family of N-term wavelet approximations uy € Xy, then an optimal adaptive
scheme should provide N-terms approximate solutions @y € Xy, such that
one also has [|u — ay||x S N7°.

2.5.1 Wavelet preconditioning

One of the interest of multiscale discretizations is the possibility of precondi-
tioning large systems which arise from elliptic operator equations. A general
setting for such equations is the following: H is a Hilbert space embedded in
L*(Q) and a(-,-) is a bilinear form on H x H such that

au,u) ~ [lull3. (2.5.1)
Let H' be the dual space of H. Given f € H', we search for u € H such that
a(u,v) = (f,v), forallve H. (2.5.2)

It is well known that from Lax-Milgram lemma, this problem has a unique
solution. If we define the operator A by

(Au,v) = a(u,v), forallve H,

the equivalence (2.5.1) implies that A is an isomorphism from H to H', so that
u is also the unique solution in H of

Au = f. (2.5.3)
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If V}, is a subspace of H, the Galerkin approximation of u in V}, is classically
defined by u;, € V} such that

a(up,vp) = (f,vp), forall v, € V. (2.5.4)

If V}, is finite dimensional, the approximated problem (2.5.4) amounts in solv-
ing a linear system. Here we are interested in the situation where H is
an L? Sobolev space: classical instances are given by the Poisson equation
—Au = f with Dirichelet conditions, where H = H{, or the Helmholtz equa-
tion u—Au = f, with Neumann boundary conditions, where H = H'. For such
equations it is known that the matrices resulting from Galerkin discretizations
in the finite element spaces are ill-conditioned, i.e. their conditions number
grows like h=2%, where h is the mesh size and s is the order of the corresponding
Sobolev space H, where 2s is the order of the elliptic operator. We remark
that elliptic equations involving integral operators of negative order also enter
the above class of problems [41].

The use of multilevel methods for preconditioning such matrices is linked
to the possibility of characterizing the L? Sobolev space H® (possibly with
boundary conditions) by means of wavelet coefficients:

1£15 ~ > 22 Wey]” (2.5.5)

AEA

Let us consider the Galerkin discretization (2.5.4) on a multiresolution approx-
imation space V; C H, corresponding to a mesh size 2-7 and we denote by u;
the corresponding solution. For the computation of u; we use the multiscale
basis {¥x}|x<s and we obtain a system

AJUJ - FJ, (256)

where U, is the coordinate vector of u; in the basis {¢x}ixj<s, Fr = {(f, ¥a) }inj<u
and Ay = {(AYx,¥u) }ialu<s is the stiffness matrix.

A result relating the norm equivalence to wavelet preconditioning was first
proposed in [59]:

Theorem 2.5.1: Consider the diagonal matriz Dy with (D), = (2%dy ),
where |A|, |u| < J. The two following statements are equivalent:

(i) H is characterized by a norm equivalence

111 ~ D 2% enf?, (2.5.7)

AEA
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(ii) The condition number K(D;'A;) = IC((D;IQAJD*U?) is bounded in-
dependently of J.

Proof: The property (ii) is equivalent to
(DJU7 U) ~ (AJUJ U)J (258)

with constants independent of the vector U and the scale level J. From the
definition of A, this can also be expressed by

a(vy,vy) ~ Z 2% ey 2, (2.5.9)

IAl<J

for all vy = 37, _;exbn in V. Since a(u,u) ~ |lully, (2.5.9) is equivalent
to (2.5.7) for all f € V;. By deunsity of the V; multiresolution spaces, this is

equivalent to (2.5.7) for all f € H.
([

2.5.2 Compression of operators

Another advantage of the wavelet basis is the sparse structure that results from
the multiscale discretization of most operators involved in partial differential
and integral equations and the good properties such operators exhibit when
apply on functions that also have a sparse multiscale representation. Given
an operator A acting on functions defined on a domain 2 C R and a wavelet
basis {1y} ren, We are interested in evaluating the entries

M = (APx, ¥p). (2.5.10)

In order to treat different examples within a unified framework [27], we
shall now introduce general classes of matrices associated to operators through
wavelet bases.

Definition Let s € R and o, 8 > 0. A matriz M belongs to the class M;, g
iof and only if its entries satisfy the estimate

1] < Car2s D@2+l lul g\, )~ (@+5) (2.5.11)

where d(\, p) := 1 + 20 dist(supp(iy), supp(,)). We denote by Mg
this class when s = 0.

The factor 250X+t describes the growth or decay (depending on the sign of
s, hence depending on the order of the operator) of the entries of M along the
diagonal, i.e. the multiplicative effect of the operator on the different scales.

The parameter s thus indicates the order of the operator: for instance s = 2
if A=A
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Remark 2.5.1: Note that the diagonal bi-infinite matriz Dy, with (D), =
255y . allows to renormalize M, in the sense that M = D;7'MD;' satisfies
the estimate (2.5.11) with s = 0, i.e. belongs to the class Myg. Such a
renormalization is exactly the preconditioning process on finite matriz described
in the previous section.

The factor 2-/A=IklId/2+a) qescribes the decay of the entries away from the
diagonal blocks corresponding to |\| = |p|. Finally the factor (1 + d(\, \'))~?
describes the decay of the entries away from the diagonal within each blocks
corresponding to fixed values of |A| and |pu].

A basic tool for the study of the classes M, ; is the Schur lemma that we
recall below.

Lemma 2.5.1: Let M = (my,)ruen be a matriz indexed by A. Assume that
there exists a sequence of positive numbers (wx)rea and a constant C such that

> wulmaul > wlmyal < Cwy (2.5.12)

BEA BEA

for all \ € A. Then M defines a bounded operator in (*(A) with | M| < C.

A first application of the Schur lemma is the following result [27].

Theorem 2.5.2: If o, 3 > 0, then any M € M,z defines a bounded operator
in (*(A). In turn, any matric M € M,z together with a Riesz basis (1)) € A
of L? defines an L? bounded operator A represented by M in this basis.

Proof: [27] We shall use the Schur Lemma with wy = 274/2. From (2.5.11),
we first obtain

W}T1 Zwu|m>\,u

< 2IN/2 3 gl 2z A-lull g )~

HEA HEA
< 20N/2 §7 gmdif2g=(d2rallIN=i1 ™ gy, i) =),
j20 lul€A;

Since 5 > 0 the last factor >, . d(\, 1)~ is bounded by a uniform
constant if 7 < |A| and by 24U~ if 5 > |\|. Splitting the sum in j according
to these two cases, we finally obtain

! Al 31/20— (d/2+a)[| A~
wy Zwu|mw| < 22 IAl=41/29—(d/2+a)||A| |
BEA j>0
5222_al<oo,

1>0

which shows that (2.5.12) holds with such weights. O
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Let us now introduce the weighted spaces

GA) = {eher: ey =D 22 Mje* < oo}
AEA

We already noted that for M € M;, 4, for s # 0, the preconditioned matrix
M =D;'MD;*,

with D, = (25"“5)\7“))\,“ belongs to the class M, g. We remark that D, defines
an isomorphism from ¢; to ¢7,,. Combining these remarks with the above
Theorem, we can describe the action of M = DM D;, as follows [27]:

Corollary 2.5.1: Ifa, > 0, then any M € M, 4 defines a bounded operator
from % to (?,. In turn, any matriz M € MG, 5 together with a wavelet basis
(x)x € A which characterize H*(2) and H*(Q) (possibly with boundary con-
ditions) defines a bounded operator A from H*(Q2) to H *(Q2), represented by
M in this basis.

The next step is to show that the estimate (2.5.11) allows to compress the
matrices in the class M, ; by discarding certain entries. We first consider the
case s = 0 [27].

Theorem 2.5.3: Let M, 3 and t < inf(a/d,3/d). For all N > 0 one can
discard the entries of M 1in such a way that the resulting matrix My has N
nonzero entries per rows and columns and satisfies

|M — My|| S N7, (2.5.13)
in the operator norm (*(A).

Proof: [27] We first truncate the matrix M in scale: for a given J > 0, we
discard my , if ||A| — ||| > J. Denoting by A, the resulting matrix, we can
use the same technique as in the proof of the above Theorem (Schur lemma
with weights 2¢/2) to measure the error ||M — A;| in the operator norm. By
a very similar computation, we obtain

1M —Al ) 27 g2

1>J

We next truncate A, in space, by preserving in each remaining block of A,
the entries m, , such that d(X, ) < k(||A| — |x||) where the function £ is to
be determined. We denote by B; the resulting matrix. Using again the Schur
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lemma in the same way as in the proof of the above Theorem, we evaluate the
error ||A; — Byl by the supremum in A of

A+
1 Z Z J
Wy wl~b|b/\,u — Mxpul
J= A= neh,;

and we obtain an estimated contribution of 27%’ for each term in j by taking
k(1) = 272/821(1=e/8) " The total error is thus estimated by

1M = Byl < 27,

with the number of nonzero entries per rows and columns in B is estimated
by N(J) < S, k(1)4. In the case where @ > 3 (resp. 3 < «) this sum is
bounded by the first term K (0)¢ = 2/9¢/8 (resp. last term K(J) = 2¢/). In
the case a = 3, we obtain N(J) < J24. In all cases, it follows from the
evaluation of N(J) and the error |M — By|| < J27/ that

1M = Byl SN (),

if ¢ is such that ¢ < inf{«/d, 5/d}. Since J ranges over all positive integers,
this is enough to conclude the proof. a

We can derive simple consequences of this result concerning the sparsity
of the operators in the classes M ; by the same considerations as for the
study of boundedness properties: for M € Mj 4, we apply the compression
process of the above Theorem to the preconditioned matrix M = D;'M D7
Denoting by My the compressed version of the matrix M, we then define
My = Ds]\;[ ~nD;. This new matrix has also /N entries per rows and columns
and approximates M in the sense expressed by the following Corollary.

Corollary 2.5.2: Let M,z and t < inf(a/d, B/d). For all N > 0 one can
discard the entries of M in such a way that the resulting matrix My has N
nonzero entries per rows and columns and satisfies

1M — My|| < N, (2.5.14)
in the norm of operators from (%(A) to (2 ,(A).

The last result [27] concerns the application of sparse matrices of the type
that we have introduced in this section on sparse vectors, possibly resulting of
adaptive multiscale discretizations for the solution of PDE’s. In the context
of nonlinear approximation theory, the sparsity of such a vector is precisely
described by the rate of decay of the error of N-term approximation: an infinite
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vector U has a degree of sparsity ¢ > 0 in some metric X, if there exists a
sequence of vectors (Uy)n>o such that Uy has N nonzero coordinates and
such that

U —Uyllx SN (2.5.15)

In the case where X = ¢? the vectors Uy are simply obtained by retaining the
N largest coordinates of U and property (2.5.15) is equivalent to U € % with
1/p=1/2+t.

Theorem 2.5.4: The matrices M € M, s define bounded operator in (N7,
for1/p=1/24t andt < min{a/d, 5/d}. In other words a vector U of sparsity
in 0% is mapped by M onto a vector V.= MU with the same property.

Proof:  Following [27] we will directly construct an N-term approximation
to V. = MU from the N-term approximation of U. For 7 > 0 we denote
by U, the vector that consists of the 2’ largest coordinates of U. From the
assumptions we know that

IV -Ujllx S 277

Fixing r €]t, min{«/d, 3/d}[, we can define, according to the above Theorem,
truncated operators M; such that A; has at most 21=¢)7 nonzero entries per
rows and columns with £ > 0 and

1M = Ml S 277
We define an approximation to V' = MU by

J
Vi = AU+ Aj (Ui =U)+. .+ Ao(U;—Ujr) = AjUs+ > Aj (U= TUpy).
I=1
It is possible to evaluate the number of nonzero entries of V; by
J
N(]) S 2(176)]' + 22(17€)j7l2l71 < 2]
I=1
Finally we can evaluate the error of approximation as follows.

j—1
IV =Vill = IM(U = Uy) + Y (M = Mi)(Uji = Uj-11) + (M = M) U
=0
Jj—1
1M U = Ul + Y IM = M| Ujy = Ujaal| + 1M = My ||| Vol

=0

IN

7j—1
< 27tj + 27tj Z 2(t77‘)l + 277‘]'
=0
274, (2.5.16)

AN
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Since j ranges over all possible integers, we have thus proved that V € (%
with 1/p=1/2+t. O

We can again derive [27] an immediate Corollary.

Corollary 2.5.3: Let M € M 4 and U a vector of sparsity t in % with
s <inf{a/d,p/d}. Then V = MU has sparsity t in the dual space (? .
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Chapter 3

ADAPTIVE SCHEMES FOR
LINEAR EQUATIONS

And Minas Morgul answered. There was a flare of livid lightnings: forks of
blue flame springing up from the tower and from the encircling hills into the
sullen clouds. The earth groaned; and out of the city there came a cry.(...)
As the terrible cry ended, falling back through a long sickening wail to
silence, Frodo slowly raised his head. Across the narrow valley the walls of
the evil city stood, and its cavernous gate, shaped like an open mouth with
gleaming teeth, was gaping wide. And out of the gate an army came. All that
host was clad in sable, dark as the night. Against the wan walls and the
luminous pavement of the road Frodo could see them, small black figures in
rank upon rank, marching swiftly and silently, passing outwards in an endless
stream. Before them went a great cavalry of horsemen mowving like ordered
shadows, and at their head was one greater than all the rest: a Rider all
black, save that on his hooded head he had an helm like a crown that flickered
with a perilous light.(...) Frodo waited, and as he waited, he felt, more urgent
than ever before, the command that he should put on the Ring. But he knew
that the Ring would only betray him, and that he had not, even if he put it
on, the Power to face the Morgul-king — not yet.

(J.R.R. Tolkien, The Two Towers)

3.1 Introduction

In the study of numerical algorithms for the solution of PDE’s, adaptive meth-
ods are commonly used when the solution u exhibits localized singularities.
Typically such methods use informations at a given step to produce, for the
next iteration, a new approximation to u with a finer resolution near the singu-
larities. Adaptive procedures are particular form of nonlinear approximation
of the unknown solution w. The approximation space in which we look for
the numerical solution is not a linear space, since the degrees of freedom are

61
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not chosen a priori, but depend on the solution w. In this context, what one
would like to do is to fix the number NV of degrees of freedoms and to design an
algorithm able to find the best possible approximation of the solution u among
all possible approximations (of a give type) with N degrees of freedoms, and
this, with a computational cost growing only linearly with V.

In the wavelet framework, thanks to nonlinear approximation techniques,
it is possible to approximate a given function with an element of the nonlin-
ear space Xy containing functions, whose wavelet expansions have at most N
non-vanishing coefficients. When the function to be approximated is known,
it is easy to define a nonlinear projection Py which allows to get, given wu,
the best N-terms wavelet approximation, by simply keeping the N biggest (in
absolute value) coefficient (properly rescaled, depending on the norm in which
the approximation is measured).

Unfortunately, in the case we are interested in, the function to be approx-
imated is not known. If we consider for instance the problem of building
a numerical scheme to approximate the solution u to the partial differential
equation

—div(aVu) = f in Q C R?, u=0 on 09, (3.1.1)

one possibility is to look for iterative approximation schemes in which by
definition the iterates belong to the nonlinear space X y.

On an abstract level, we write down a convergent iterative scheme for
the continuous problem, and then we force the iterate to belong to Xy, by
simply projecting it onto such space using the simple approximation strategy
for known functions described above.

On a practical point of view, this is achieved by following the "new ap-
proach” (see Introduction):

1. transform the given PDE into an equivalent infinite linear system whose
unknown is the infinite vector of wavelet coefficients of the unknown
solution.

2. write down a convergent iterative scheme for the infinite linear system.

3. at each iteration approximate (possibly adaptively) the infinite matrix-
vector multiplication by a finite matrix-vector, by performing a pre-
vision step, aiming at individuating a priori finite number of relevant
coefficients, which will be possibly picked up by the nonlinear projection
step, while the remaining will be most certainly discarded.
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Convergence of algorithms of this type strongly relies on a key feature of
wavelets, namely what is usually referred to as wavelet preconditioning (see
Section 2.5.1): equation (3.1.1) can be rewritten in an equivalent form as
infinite system:

Au=g, with A, A e L( %), (3.1.2)

where u is the infinite array of the coefficients u, of the unknown solution
u = Yy, uxthy, expressed with respect to the basis {15}, obtain by suitably
renormalizing the basis {1, }..

Based on these ideas, we present a computable scheme, which we prove
to be convergent to an approximate solution with almost the same approxi-
mation rate as the one which is achieved, (under the same Besov smoothness
assumptions) by the nonlinear approximation of a given function. In partic-
ular, as mentioned in the Introduction, we deal directly with the problem of
the approximate application of a certain class of linear operators in wavelet
coordinates, providing an explicit strategy.

Let us for the moment assume that we have selected two sequences IV, and ¢,

No <Ny <---Np, <N, <---<Np =N
€) > €1 > €y > €py >0 > €y
We are interested in schemes of the following type, where, by abuse of nota-
tion, we will also denote by Py, the operator that associates to the coefficients

of a function u, the vector of coefficients of its nonlinear projection Py (u):

Nonlinear Richardson

Step 1. Initialization: set u(® = 0.
Step 2. Until n < n, repeat
Step 2.1 Prevision: select a finite dimensional set V(™ C A such that, de-
noted by S, the linear subspace of ¢? of the form S, = {v €
2 vy=0, g€ V™} we have

inf ||g(”) +0r™ — vl < Cep,
VESn

where r(™ = g— Au™ denotes the residual and where the constant
C depends only on initial data.



64 Adaptive schemes for linear equations  Chapter 3

Step 2.2 Compute an approximation
f(n) € {Q = ('U)\))\EA € 82 DA ¢ V(n) = Uy = O}

of the residual 7™, in such a way that || — f(")||gz < Ce,,.

Step 2.3 Projection: set
uth = Py, (g(n) + gf(n))'

Step 2.4 Update: n+1—n

The construction of a suitable set V(™| which is possible thanks to the good
space frequency localization properties of wavelets, is a necessary step for an
algorithm of this type to be practically implemented. Neverless we postpone
such an issue and we first concentrate on the study of the influence of the
nonlinear projection step in the Richardson type algorithm.

The outline is as follows: in section 3.2 we recall some useful results about
wavelets and nonlinear approximation, in section 3.3 we state the problem to
solve, in section 3.4 we discuss a non-computable abstract scheme to study the
influence of the nonlinear projector step and finally in section 3.6.3 we analyze
the Nonlinear Richardson scheme and the construction of the prevision set
A,

3.2 Notations and Preliminary results

In the following we will employ the notation A < B to indicate that the
quantity A is bounded from above by a positive constant times the quantity
B, while A ~ B will stand for A < B < A.

For simplicity let us fix the following functional setting: let 2 C R be a
bounded domain, and suppose we are given a Riesz basis {1)x}aca, A = Ui Ay,
for L*(2), such that, for some parameter p > 1, the following norm equivalence
for the Besov spaces By (€2) holds for all 5,p,q,0 <5 < 5,0 <p < o0, q>0:

q/p

std_dy;
1Y S uathalle @ = DTN | (3.2.1)
g ()
A J

)\EAJ'

The splitting of the index set A as A = U32,A;, corresponds to distinguish-
ing functions “living” at different scales (A € A; <> (suppyy) ~ 279). It is
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beyond the goal of this paper to describe how and under which conditions on
(2 such bases {1, }. are constructed (see, among others, [24], [39]).

Since H*(§2) = Bj,(Q2), from equivalence (3.2.1) we deduce that for all s,
0<s< S

I ZUMZ))\”HS(Q) ~ [lulle,  with Py = p 7*¢y. (3.2.2)
X

Moreover, when considering nonlinear approximation in H*, the scale of Besov
spaces BL15(Q) — where 7 = 7(r) is defined by the relation £ = % + £ — will
naturally appear. For these spaces the norm equivalences in terms of wavelet

coefficients are quite simple; indeed using again equivalence (3.2.1), we obtain:

1D uxihsl
A

(3.2.3)

DN |

1 T
r+4s ~ T, )\ E /X'7 lth - = - +
BIE () lulle j Wit — =4

where again ¥, = p~i5,.

In the following it will also be useful to consider the space of functions
whose coefficients, with respect to the rescaled basis {z/v),\} A, are in the weak—("
space (7, which can be defined as the space of sequences u = {u,}, for which
there exists a constant C' such that

#{N: |uy| =€} <Ce™, (3.2.4)

the norm ||ul|7. being defined as the smallest C' which verifies relation (3.2.4).
It is possible to prove that ¢7 C ¢7 & which implies that the coefficients {uy}
of a function u € BJT* verify {ux}x € €7,

Let us now recall some facts about nonlinear wavelet approximation: the
space Xy C V,

Sv={u=) avy: c={c}s €on}
X

with
oy ={ce€lP(N): #{NeA: cy#0} <N},

is a nonlinear space containing functions in L?(€2) which can be represented as
the linear combination of at most N elements of the basis {3 }». A nonlinear
projector Py : L?(2) — Xy can be defined as follows: given u =Y, uhy, let
us introduce a decreasing rearrangement {|uxm)| }new of the sequence {|ux|}aca,
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where the application n € N — A\(n) € A is bijective and verifies n < m =
Uy > [urm)|; Py (u) is then defined by:

N
Py(u) = Z Un(n)PA(n)
n=1

that is only the IV greatest (in absolute value) coefficients of u are retained.
We recall that by abuse of notation we will also indicate by Py : 2 — oy
the operator associating to the sequence wu the coefficients of the function
Py (>, uats). The accuracy of the corresponding approximation is directly
related to (] regularity of the sequence of coefficients of u, as stated by the
following theorem [47], [48].

Theorem 3.2.1: Let u =), , uxtn, with 1y = p~7%1hy, s < S. If {ur}s €
07 then

lu — Pyulle S inf Jlu—wlle S N-GF2)|uflw
WEoN

where the implicit constants in the bounds depend only on T.

3.3 The Problem

Let us now consider a linear operator A : H*(Q2) — H °*(Q), 0 < s < S,
(H~*(2) denoting here the dual of H*(2)) and let the corresponding bilinear
form a : H*(Q2) x H*(©2) — R be defined as:

a(u,v) =< Au,v >, Vu,v € H* (),

where < .,. > denotes the duality pairing between H~° and H®. We assume
that the bilinear form «a is continuous coercive, that is; Yu,v € H*(Q):

a(u,v) < M||ul

H5(Q)) a(u,u) > allul %IS(Q)'

1@ ||v|
We consider the following problem: given g € H*(Q2), find v € H*(Q) such
that:

Au = g. (3.3.1)

Under our assumptions it is well known that for any ¢ € H~*(2) equation
(3.3.1) has a unique solution; this is also the unique solution of the equivalent
variational problem: find v € H® such that

a(u,v) =< g,v>, Yve H(Q). (3.3.2)
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3.4 Nonlinear Richardson I: the basic scheme

Depending on the regularity of the data and on the domain €2, the solution of
problem (3.3.2) may be smooth, or it may present some singularity (see e.g.
[66], [55], [61], [37]). In the last case, the fact that using some adaptive tech-
nique — in which the approximating space is tailored to the function u itself —
is necessary in order to get a good approximation rate, is well accepted. The
results in Section 3.2 on nonlinear approximation allow to rigorously formalize
such fact and provide, in the wavelet context, a simple and efficient strategy
for adaptively approximating wu, if this was given. However, in the partial
differential equations framework the function that one needs to approximate
is not known. We would then like a strategy for designing an approximation
space for the (unknown) solution u of the given PDE with the same approxi-
mation property that one would get if the solution was known.

In order to do so, according to the abstract approach described in Sec-
tion 4.1, the first step is to transform the given continuous problem into an
co-dimensional problem: we express u in terms of the rescaled basis {1y},
P\ = 27751y, and we rewrite the initial continuous problem (3.3.2) in terms of
the Fourier coefficients u = {uy}, of the unknown solution

U= Z U’/\d;/\a
A
thus obtaining an oo-dimensional linear system of equations:

Au=g (3.4.1)

where

A= (au,)\)u,)\EAa QN =< AZL)U ’J),u >, g = {gu},u =< f7 77;;1 >,

are a bi-infinite matrix and an infinite array respectively. It is not difficult to
check (see Sections 2.5.1 and 2.5.2) that A € L£(¢?, %) and that it is boundedly
invertible, that is:

1Al ze2,e2y S Ch, A | 2ez,e2y S Co

The second step is to write down a convergent numerical scheme for the
oo-dimensional problem: we design a method finding an approximate solution
to the co-dimensional problem (3.4.1) in ¥y. To this end let us assume that
the basis {1, }, and the operator A are such that it holds for some 75 < 2:

Ae L(P,00). (3.4.2)

w W
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We remark that under suitable space-frequency localization properties of the
wavelet basis {1, },, condition (3.6) holds for a wide class of differential and
pseudo-differential operators ([28]).

The abstract scheme we want here to discuss is the following, where the tol-
erance tol clearly depends on the number N of degrees of freedom:

basic nonlinear Richardson
begin

Input: N, tol
u® =0

while ||7(™]|,2 > tol do

compute ("
as r™ = g- Au™

update

end
Output: uy =), U&RH)TLA

end

This is not a computable numerical scheme since it involves operations on
infinite matrices and vectors. Such scheme will be coupled in section 3.6.3
with suitable compression steps applied both to the operator A and to the right
hand side g, which will allow to actually implement it efficiently. Nevertheless
it is interesting to consider such a scheme in order to analyze the influence of
the nonlinear operator Py. In particular the main result of this section is the
following Theorem:

Theorem 3.4.1: Let A € L({D,070) N L((2,0?) for some 79 < 2. Then there
erists a T < 2 and a 0y > 0 such that, for all 0, 0 < 6 < 0y, it holds (the
implicit constants in the inequalities depending on )

(i) stability: if g € (*, we have

[u"lez S llgllees Vm €N (3.4.3)
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(ii) approzimation error estimate: if g € £, T < 7 < 2 then, selting e” =

7 w?
u™ — u, it holds for some pu < 1:

1 (1,1
le™ e S 1™ {leolle + T (z+3); (3.4.4)

In order to prove theorem 3.4.1 we need to recall the following lemma [28].

Lemma 3.4.1: Let A € L, 07) N L((2,0?), for some 19 < 2. Then there

w W

exists a constant 0y > 0 and a 7, 19 < T < 2, such that Y0 with 0 < 0 < 0, it
holds:

11— 0A[ g2z < p <1, (3.4.5)
T = 0A] zer ) < v <1, forallT, 7<71<2 (3.4.6)

Proof of Theorem 3.4.1: First of all we observe that Py is /?>-contractive.
Then, since u" € ¢? (only N coefficients are non zero by definition), using
Lemma 3.4.1, by (3.4.5) one has:

lu™ e = [|Px (u" +60(g — Au"))le2 < [lu" +0(g—Au®)|lez < [10g]lex + el [ | 2.
By iterating this bound we obtain:
[u™*lee < (Z /Jf) 10gllez + 1" [0l ez,
i=0

which, since p < 1 and u° = 0, yields (3.4.3).
Now let

e" = Py(u" +0(g — Au")) — (u" +0(g — Au")).
A simple calculation yields:
et — e 0 A" =",
which, taking the ¢? norm and using (3.4.5) again, yields
e e < plle™ ez + lle™ ez (3.4.7)

[terating (3.4.7), we then obtain:

n n
e =3 W HlH e+ eolle < (max ||§’f||p) S+ i el
1=0

0<k<n
k=0 - T
(3.4.8)
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The sum on the right hand side of (3.4.8) converges (1 < 1) and then we can
write:

1—

To conclude, we only need to give an uniform bound on ||¥||s2. Using Lemma
3.4.1 it is not difficult to show that g € £, implies u* + 0(g — AuF) € £, with:

1
le™ Hlee < T, ¥ llee + 1" leollee- (3.4.9)

" +6(g — A )|, <C, (3.4.10)

uniformly in k. Indeed ||I —0A| ;@ ¢y < 7 < 1 and since Py is £], contractive,
setting
wk-}-l — gk + 0(2 o Agk)

we can write:
W™ ey = (I — 0A) " + 0glley, < [I(T — OA) Lo + 10g]le;, < Yl lleg, + [10g]le;
= YIPn (w®)|ler, + 110gller, < Alw(|er, + [10g]ler,-

By iterating this bound, we obtain:

k
0" < g + (Z“> Il < 7= lalizs i
=0

which yields (3.4.10). Thanks to (3.4.10), by applying Theorem 3.2.1, we have
that:

max [|"|e S N (- + %>m3x||gk+9( — AP || < N-GHIC(g).

Combining such bound with (3.4.9), implies the thesis. O
Using norm equivalence (3.2.2), this yields the following corollary.

Corollary 3.4.1: Let u be the solution of (3.3.2) and let g belong to B t*(€2),
with r such that 0 < r + s < min{S,d/T — d/2} and with T given by 1/ =
r/d+1/2. If ux}) =3 ug\n)lﬁA is the non linear approzimation of u at step
n giwen by the non-linear Richardson scheme with 6 < 6y, then it holds, for
some | < 1:

C
||u—uN sy < p"f|u — uN ||Hs +ﬂN i, VYneN
Remark 3.4.1: Though for simplicity we set u® = 0 throughout this section,
it 1s not difficult to realize that the result holds unchanged also for any initial
gquess in Xy.
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3.5 Numerical results

In this section, we test basic nonlinear Richardson scheme on a very simple
1D model problem, namely, let T be the unit circle,

Problem 3.5.1: find u € H'(T) such that
a(u,v) = (f,v) for all v € H*(T),
where a(u,v) = [Lu'v' + [Luv and (f,v) = [} fv.

The tests we will show in the following aim at studying only the influence of
the nonlinear projector Py at each iteration of the scheme and they won’t face
the problem of the effective construction of the prevision sets. The tests are
referred to different choices of the function f. In particular we will study the
behavior of the error in L? and H' norm as a function of

1. the number n of iterations,

2. the number N of degrees of freedom to be retained.

3.5.1 Two cases

We performed the numerical tests, by using the pair {,, 1/~)>\} of biorthogonal
B-spline wavelets B2.2 on T. We will refer to biorthogonal B-splines wavelets
BN.N to signify that V; and V are the subspaces of B-splines of order N — 1
and N — 1 respectively (W1th N , N > 1) defined on the uniform grid obtained
by splitting the unit interval into 2/ equal segments.

Let us denote by u; = ZIAKJ u ) the wavelet decomposition of the exact
solution u at resolution .J and by u}** the N-terms approximation to uy,
built after nmax iterations of the scheme.

(A) The exact solution of the Problem 3.5.1 is

cosdnz

u(z) =e +sindrx — e (3.5.1)

and f is defined by f = —u" + u.

The numerical results, performed with J = 9 e nmax = 50, are presented
in the following tables
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Error in norm L?
N | lug — ay™® |2
10 | 32.92885
20 | 1.33461
30 | 0.51570
40 | 0.31117
51 | 0.22131
61 | 0.11242
71 | 0.07977
81 | 0.10276
92 | 0.09832
102 | 0.06135

Table 3.1. L?-approximation error.

Error in norm H*!
N | fJug = uf™* |
10 | 39.88046
20 | 11.95111
30 | 8.39278
40 | 5.94793
51 | 4.83391
61 | 4.05235
71 | 3.32526
81 | 2.88048
92 | 2.56872
102 | 2.30032

Table 3.2. H'-approximation error.

Plot of the exact solution (3.5.1)
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0.5

Figure 3.1. Exact solution.

In the following we show some plots dealing with the behavior of the
approximation error.

(*) Behavior of ||u; — uR™**|| ;2 as a function of N

log(error)

-3 I I I I I ,
-5 -4.5 -4 -35 -3 -25 -2
log(1/N)

Figure 3.2. Logarithmic plot of the L?-approximation error.

(**) Behavior of ||u; — u¥™*®|| ;1 as a function of N



74 Adaptive schemes for linear equations  Chapter 3

log(Error)

05 . . . . .
-5 -4.5 -4 -35 -3 -25 -2
Iog(1/N)

Figure 3.3. Logarithmic plot of the H!'-approximation error.

(***) Behavior of |ju; — u%||r2 as a function of the number n of the
iterations, for different values of NV

35

251

151

0.5

L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50

Figure 3.4. Plot of the error ||u; — w'y||z2 as a function of n, with N =
40, N = 61.

Having in mind error estimate (3.4.4)

1 (1,1
s = willae S pllus =yl + =N,

from Figure 3.5.1 it is clear that going beyond the efficient number

of iterations, which can be obtained by ”balancing” the two terms

on the right-hand side of the above inequality, does not bring any

further reduction of the approximation error.
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(B) The exact solution of the Problem 3.5.1 is

fo<z<1
u(z) = i Ho=ws /3 (3.5.2)
20 +3/2 if1/3<z<1.

and f is defined by f = —u” +u. The numerical results, performed with
J =9 e nmax = 50, are shown in the following tables.

Error in norm L?
N | flug — ug™*][re
10 | 0.44666
20 | 0.03138
30 | 0.00173
40 | 0.00001
51 | 0.00002
61 | 0.00008
71 | 0.00017
81 | 0.00029
92 | 0.00042
102 | 0.00054

Table 3.3. L?-approximation error.

Error in norm H'!
N | [ug — wg" |l
10 | 0.96855
20 | 0.26324
30 | 0.01619
40 | 0.00001
51 | 0.00004
61 | 0.00019
71 | 0.00044
81 | 0.00080
92 | 0.00117
102 | 0.00152

Table 3.4. H'-approximation error.
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Plot of the exact solution (3.5.2)

0.6 il

05F q

0.4 q

03[ il

Figure 3.5. Exact solution.

In the following we show some plots dealing with the behavior of the
approximation error.

(*) Behavior of ||u; — uR™*®|| 2 as a function of N

2k

log(error)
|
)
T

10 | . .
-5 -4.5 -4 -35 -3 -25 -2
log(1/N)

Figure 3.6. Logarithmic plot of the L?-approximation error.
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(**) Behavior of ||u — uy"**|| 41 as a function of N

s

log(Error)
\
&
T

.
5 -45 -4 -35 -3 -25 -2
log(1/N)

Figure 3.7. Logarithmic plot of the H'-approximation error.

Remark 3.5.1: Due to the particular form of the exact solution,
the approzimation errors ||uy — uN"||p2 and ||uy — W™ || g1 de-
crease in a steep way, rapidly reaching the machine precision.

(***) Behavior of ||u; — ul||z2 as a function of n, for different values of
N

0.7

Error

35 40 45 50

Figure 3.8. Plot of the error [|u; — u%|.2, as a function of n, with N =
40, N = 61.
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3.6 Nonlinear Richardson Il: the reliable scheme

In this section we discuss computable Nonlinear Richardson-type schemes in
order to find an approximate solution to the problem (3.4.1) in oy.

We make the following assumptions: the basis {1y}, and the operator A are
such that, setting

1 N '
i) = Supp%‘ suppyy # 0, (3.6.1)
0 otherwise,
it holds for some R > 2, for A € A; and X' € Ay
| < Ay, x> | < Ky = K27 GHRITI(0 N, (3.6.2)

We remark that under suitable space-frequency localization properties of
the wavelet basis {15}, condition (3.6.2) holds for a wide class of differential
and pseudo-differential operators [28].

Property (3.6.2) implies the boundedness of the operator A as an operator
from ¢, to ¢;, on a whole range of indexes 7. In particular we let 75 > 0 be
such that the matrix K = (ICy x) ., satisfies

KeLl(l,t), VT > 0.

w?) w

We observe that certainly 7y = 79(R) can actually be strictly smaller than 1,
as R increases. The relation between the value of R and the actual value of 7
is the topic of the following Lemma which is a simple consequence of Theorem
2.5.4.

Lemma 3.6.1: Leto > d/2. If s < 0—d/2, a matriz D, whose entries satisfy
the estimate o
Dy | < K271\, N), (3.6.3)

defines a bounded operator in (*> N (L for all p such that 1/p =1/2+ s/d.

Let us now consider the following result [28].

Lemma 3.6.2: Let A satisfy property (3.6.2), and let 79 < 2 be defined as
above. Then there exist 7, 1o < T < 2 and a constant 0y, such that YO with
1 <60 <46, it holds:

||I — 9./4“[,(@2752) <pu< 1, (364)

and V1, 7 <1 < 2,
1= 0Allcegep) <7 < 1. (3.6.5)
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In order to find an approximate solution to problem (3.3.2) in oy, where N
is fixed a priori, we propose a computable nonlinear Richardson type-scheme,
which couples Richardson iterative scheme and nonlinear approximation. We
observe that Lemma 3.6.2 guarantees the convergence of the plain Richardson
scheme for the solution of the infinite linear system (3.4.1). Nonlinearity is
plugged in the scheme, by forcing, at each iteration, the approximate solution
to belong to the nonlinear space oy, , for some N, < N. For n; < ng, we
ask that N, < Ny, (and so oy, C oy,,) and that N = N for some n > 1.
Roughly speaking at each iteration we inflate the nonlinear space oy, , which
the approximate solution u(™*1) belongs to, till we reach the target nonlinear
space oy. Since the plain Richardson scheme involves the multiplication by
the bi-infinite matrix A, in order to make such an algorithm practically fea-
sible, we will also need to approximate such multiplication. At each iteration
this will be done with a precision €,, with €,,; < €,. Suitable choices for the
parameters N, and €, will be discussed in the following. Clearly, the choice
of the N,,’s and of the ¢,’s will be not made independently, if optimal perfor-
mance is aimed at.

Let us for the moment assume that we have selected two sequences IV, and ¢,

No <Ny <++Npy <Np, <---<N;=N (3.6.6)
€0 > €1 > €y > €y > > €6y (3.6.7)

The algorithm is performed in several steps.

Computable nonlinear Richardson
Step 1. Initialization: set u(® = 0.
Step 2. Until n < n, repeat

Step 2.1 Prevision: select a finite dimensional set V(™ C A such that, de-
noted by S, the linear subspace of % of the form S, = {v €
Z: vy=0, A\Z€V™} we have

inf ||u™ + 6r™ — y||2 < Cep,
QESTL

where r(™ = g— Au™ denotes the residual and where the constant
C depends only on initial data.

Step 2.2 Compute an approximation
f(n) € {Q = (U)\)/\GA € 42 DA ¢ V(n) = U\ = 0}

of the residual (™, in such a way that ||r™ — 7™ < Ce,.
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Step 2.3 Projection: set
umtD) — Py, (g(n) + gi(n))'

Step 2.4 Update: n+1 —n

Even if A is a bi-infinite matrix, the scheme is reliable as it carries out
computations, at each iteration, over a (finite) prevision set V(™. Moreover
with a suitable choice (see Remark 3.6.3) of the number N,, of the coefficients
to be retained at each iteration, it is possible to reduce the computational
cost of the algorithm, without loosing accuracy in the approximate solution.
Indeed when the number of iterations is small we are far from the exact solution
and so we don’t loose too much using a small number of degrees of freedom,
instead when the number of iterations increases, the error of the iterative
scheme becomes small and in order not to waste this gain, we need to use a
larger number of degrees of freedom.

3.6.1 Prevision

A crucial ingredient in the above algorithm is the a priori construction of the
finite dimensional prevision set V(™. As at each iteration of the scheme we
restrict the action of the nonlinear projector Py to the finite set V™ we
need to choose this set in such a way that the coefficients whose indexes we
discharge a priori (i.e. not belonging to V(") are sufficiently small, in order
not to make the algorithm loose accuracy in the estimation of the approximate
solution.

To accomplish this goal, we start by defining a sort of measure of the
interactions of two indexes A = (j, k) and X' = (j',k'): for each A we define a
neighborhood in A by:

I e)={N: o\XN)>¢},
where € is a given tolerance and
oA, N) = 27275 N,

with R depending on the regularity of wavelet basis and

) (3.6.8)
0 otherwise.

i) = { 1 suppty Nsuppyy # 0,

Let now w € Xy

w = Zwﬂb)\, #(A) = N.

AEA
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We want to compute r)y:

X =0gx — (-Aw))\ =gx— Z AN WA, (3.6.9)

NeEA

where ay y =< Ay, by >, within a prescribed accuracy. In order to do so,
we split the sum at the right hand side as the sum of two contributions: one,
dy, coming from frequencies A" belonging to the neighborhood I(A,€) of A; the
other, e,, coming from frequencies not belonging to it:

(Aw)y = dy + ey, (3.6.10)
where
dy = Z < Alﬂ)\/, Uy > wy, (3.6.11)
NeANnI(Ae)
ex= Y <Ay, > wy. (3.6.12)
N EeA\I(Ae)

The contribution ey to (Aw),, of frequencies A’ not belonging to the neigh-
borhood (A, €) of A, can be controlled by tuning the parameter €, that is with
a suitable choice of the size of the neighborhood I(\,€). To this aim we let
71 be such that the matrix K = (ICA,X)A,X, with, for A € A; and X' € Ay
Ky = 2271, v satisfies

Ke L, ),vr >, (3.6.13)

w?) w

where, by using Lemma 3.6.1 with D = K and ¢ = 1/2 + R/2, the value of
71 = 11(R) can again be strictly smaller than 1, as R is sufficiently large.

We have the following Lemma.

Lemma 3.6.3: Let A satisfy (3.6.2). There exist constant Cy and Cy depend-
ing on the operator A and the wavelet basis {1x}», such that we have:

lellez < Coellwllez, (3.6.14)
and for all p, 7, < p <2
lelle, < Crellwllg. (3.6.15)

Proof: Using property (3.6.2) in the definition of ey, together with the
definition of the set I(\,€), we obtain the following estimate for all A:

leal < K Y27 (A, X jwy| = e(Kw)s. (3.6.16)
AI
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We then easily write )
lelle < €ellKlleee e llwlle,

and for all p, 1 < p <2
||€||£5, < f||’€||£(e{;,z$)||w||zg-

By using Lemma 3.6.1 it is not difficult to prove that there exist constants C
and C such that ||IC||zee2,e2) < Co, and [|K| g, ) < C1, and this allows to
conclude. a

Now we come to the topic of approximating the right hand side g. As a
matter of fact we recall the following result [47]:

Lemma 3.6.4: Let g € (> and let T;g be defined by:

S P D
The following estimate holds for every 0 < 7 < 2:

lg = Tgller < ellg — Trglli! < ellglly*.

Define then sets B and C:

B={\: I\enNA#0},

C={\: lpl=errh

We then define 7 = 7(w) in {v = (v)) € £*°, vy =0VAEZBUC} as

g/\—d)\ rxeBnc

ANeC\B
F=Tg—d, thatis 7 =47 €C\ (3.6.17)
- —d, ANEB \ C
0 otherwise.

Now it is easy to obtain the following two Corollaries:

Corollary 3.6.1: Let r = g — Aw, then we have
I = Elle < Coe(llwlle + llglle)-
Corollary 3.6.2: If 1 is defined as above, then it holds that:

[1Z]ler, < Crlllwlleg, + llgller,)-
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3.6.2 Error Estimate

Let us then suppose that we are give non increasing sequence (¢€,), of positive
real numbers and a non decreasing sequence (IV,), of integers, respectively
converging to 0 and to +00 as n — +00.

Given u(™, we consider the prevision set V(™ := BMUC™  where A C A
is the set containing the coefficients of u(™:
B™ ={x: I(\e)NAM £0},

_2

CW={r: |gl>e "}
We then define 7™ = F(u™) € {v € £*°, vy = 0 VA ¢ V®} according to
(3.6.17):

A =Trg— > < Ay, > ul)
NeI(Aen)NA)

and we consider the nonlinear Richardson scheme:
u™ =Py (u™ + 07M). (3.6.18)

The residual 7™ = (F&"))Aev(n) is the truncated residual computed on the
prevision set V(.

The main result of this paper is the following Theorem, which considers the
influence of the prevision step on the accuracy of the algorithm and provides
an error estimate [19]:

Theorem 3.6.1: Let A satisfy assumption (53.6.2). Then there exist a T < 2,
a By >0 and an € > 0 such that if eg < €, for all 6, 0 < 0 < By, it holds (the
constants in the inequalities depending on initial data):

(i) stability: if g,u® € (2 we have
™| < C, VneN, (3.6.19)

(ii) approzimation error estimate: if g € (7,, with max{7, 7} <7 < 2, then
it holds for some p < 1:

" e S T |u© — e

+ Clulle ligle) ((’Zw—iq - Zun—wiu;) .
=0 i=0

(3.6.20)

[
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Proof: Let 7 and 0y be given by Lemma 3.6.2. Let us start by proving the
stability estimate (3.6.19). First of all we observe that Py, is trivially both (2
and (7 -contractive. According to (3.6.18), by Lemma 3.6.2 we have:

n+1

lu™ e < (T = 0A)u™ 2 + 0llgllee + Ol 2

<
< (1 + 0Coen) [[u™ ||z + 0 gl 2 (3.6.21)

where we have used inequality (3.6.14). Then iterating relation (3.6.21), we
obtain:

lu V]| < (H(u + cem) 1u®1|p> + 6 (1 +2 1+ 0960) lglle:

i=0 =0 (=i
(3.6.22)
Similarly we have:

lu™* D]l < (Hw + cem) a1l + 6 (1 +2 1o+ 0960) lgllez

i=0 i=0 (=i
(3.6.23)

Since condition (3.6.7) implies €, < €y, we then have
™Dl < (n+ COe) MuOlee + 0> (1 + Cheo)’llgllee- (3.6.24)

1=0

If €y is chosen in such a way that (u + Cfey) < 1, then the sum on the right
hand side converges, and this yields (3.6.19). Analogously, if €y is chosen in
such a way that (v + Cfey) < 1, then one can prove that

[u™ g, < C,. (3.6.25)

Let us now consider the error. Letting

g™ =Py (u(n) + gf(n)) _ (u(n) + gf(n)),

a simple calculation yields:
u" — = (1 = 0A) (u™ — u) + 0F™ — ™) 40,

where ™ = g — Au™ is the residual calculated on A, from which, taking the
% norm and using (3.6.4),

™ — ulle < plle®™ — wlle +OIE™ — 2™l + 1l 2. (3.6.26)
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[terating (3.6.26), we then obtain:

n n
Y = wlle < M = wlle + 03 i NED 2Ol + e
i=0 i=0
(3.6.27)
The first term on the right hand side converges to zero, since, by Lemma 3.6.2
we have that ¢ < 1. Let us then bound the remaining two terms.
By applying Corollary 3.6.1 with w = u(?, together with the stability result
(3.6.19) we obtain:

17D = 1Oz < C(lu ez, l|glle2) €
As far as [|g™||,» is concerned, by applying Theorem 3.2.1, we have that:
(141
le®lle S N2 1wl + 5|

Let us then bound the ¢;, norm on the right hand side. Thanks to Corollary
3.6.2, we have:

1™ + 05 e, < Nu®™leg, + 012 e

<
< O, g). (3.6.28)

which yields
(=3)

1™ lee S Nu 72 Clg, u).

Combining such bound with (3.6.27) and using Lemma 3.6.4 imply the
thesis:

“ . " (i1
™ —ullee "M u® —ull e +C (12, llgllee) (92’”_%1‘ + 2N 2)>
1=0 1=0

O

Remark 3.6.1: We would like to point out that in order for the sum
ST + e
i=0 (=i

at the right hand side of (3.6.22) to converge it is sufficient that

(u+Cley) <c< 1, Ve > 0,

for some €. The method is then stable also if €y is not smaller than €. Clearly,
in such case the stability constant will depend on the sequence (€,). Such
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dependence is however not a problem as far as the asymptotic is concerned,
since such constant gets smaller if the sequence (€,) gets smaller element-wise.
In particular one can choose a reference sequence (€,) and for all sequence
(€,) such that €, < €, the stability constant is uniformly bounded by a constant
depending on (&,).

Using norm equivalences (4.2.5), the above result can be translated in terms
of the corresponding continuous problem (3.3.1), as stated by the following
corollary:

Corollary 3.6.3: Let u be the solution of (3.3.2) and g belong to B]*(S2),
with T given by 1/ = r/d + 1/2 and with r such that 0 < r+ s <
min(S, d/(max{7,71}) — d/2). If u®™V = 3, w4y is the non linear ap-
proximation of u at step n + 1 of the non-linear Richardson scheme, with
0 < by, then it holds, for some p < 1:

n L x 0 n By
i=0 1=0

for all n € N, where the implicit constants depend only on initial data.

Remark 3.6.2: Though for simplicity we fized throughout this paper a varia-
tional framework corresponding to an elliptic Neumann BVP on the bounded
domain €2, it is not difficult to check that the whole proof of the result obtained
relies on the representation (3.4.1) of the Problem and on the norm equiva-
lences (3.2.1) and (3.2.3). Therefore such results carry over to much more
general situations (Dirichlet BVP, Integral equations) where the space B:j;s 18

substituted by the space for which a representation of the form (3.2.3) holds.

3.6.3 Choosing the tolerances

We now need to choose the sequences (1V;) of the number of d.o.f. to be
retained at each iteration and (¢;) of the tolerances to be used in the prevision
step. In order to do so we imposing a sort of “balancing” between the terms of
the sums in equation (3.6.1), in such a way that all contributions to the error
have roughly the same order. More precisely we ask that

" . i .o _(1_1
Mn+1 ~ Zunfzei ~ Z}unszi (T 2).
1=0 =0
Since

n n
n—t_ __ . n+l —i—1
E e = E K €i;
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the tolerances ¢; should then be chosen in such a way that

+0o0
Z,u_l_lei < +00.
i=0

It is not difficult to see that this holds for instance for the choice
sl
- ilogi

€

Analogously, we will choose N;

N; = (iligf) = .
/Ll

If we are interested in approximating v with /N degrees of freedom, we will
then have to stop for

nlogn Ea
Mn—i—l )

N:Nn:<

that is at iteration n(N), n(NN) being the smallest integer such that
2T
logn + loglogn + (n + 1)|log p| > (2—) log N.
-7

It is not difficult to realize that
log N

n > (1/7—1/2)m—

3.7 Nonconforming domain decomposition

3.7.1 Functional Setting

Let 2 C IR" be a bounded polygonal domain with Lipschitz boundary 0f2.
Let €2 be decomposed into a finite number of non—overlapping polygonal sub-
domains QF, k =1,... K,

K
=49 QFNQ™ =0, k#m, (3.7.1)
k=1

where

Y= (LKJ an> \ 00 (3.7.2)
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is called the skeleton of the decomposition. We will also employ the notation

I .= 00F \ 00 (3.7.3)
so that
K
=" (3.7.4)
k=1

Let H'/2(0QF) and H&gQ(Fk) be defined as the trace space of, respectively,
HY(QF) and H},(QF) := {vF € HY(QF), v¥ =0 on 0Q N 9Ok}, with norms
||U||H1/2(39k) = inf ||Uk||H1(Qk), (375)
vke HL(QF): vF| =0

inf ||Uk||H1(Qk)

ol iz e =
Hoy™(TF) ok EHL, (QF): vF| =0

Remark 3.7.1: Equivalent norms for H'/?(0QF) and for H&éQ(Fk) can be de-
fined through the norms of H*/2(]0,1["') and H&f(](), 1["1) by using an atlas
and partitions of unity where the constants in the equivalence depend on the
diameter of QF.

For each k, let HAZ(T®) be either HY2(T*) or Hy)*(T*), depending on
whether I'* is a closed or an open set, with norm

o , if TF N oQ £ 0,

|o]1/2,00 1= | ||Héé2(rk) : # ok . (3.7.6)

’ o]l 12 (00r), otherwise, (i.e., if T = 9QF).

We will denote by (-,-);/2r+ the corresponding inner product. Moreover, let

Hgéﬂ(f‘k) be the corresponding dual, whose norm and inner product will be
denoted by |-|_y /o r+ and (-, +)_1 o re. Duality between H%Q(Fk) and HgQI/Q(F’“)
will be written as (-, -).

We can now introduce the functional setting for the domain decomposition
method we are going to consider. Let V' be the product space

V.= {(yl,,..,vK)7 vk eHl(Qk)7 P =00n 00NOO% k=1, K}
(3.7.7)
which is isomorphic to

{veLyQ): vF =v|jgr € HY(QF), v =00n 0QN N, k=1,--- K},

endowed with the norm

K
Wl =Y 1 ey, vEV, (3.7.8)
k=1
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induced by the inner product

K
(u, )y =Y (¥, 0%) praon.- (3.7.9)
k=1

Moreover, let A and ® be defined by
K
A= Hye (1) (3.7.10)
k=1

and ® = Hj(Q)|y, that is
® := {0 € Ly(X) : there exists v € Hy(f) such that o = v|,,}.  (3.7.11)
A and @ are endowed with the norms
K
lulla =Y W 2 e lolle:=" inf  [lollm@),  (3.7.12)
k=1 vEH(Q): v|g=0
respectively. We remark that H} () can be identified with a subset of V/,
Hy(Q) 2 {v=(v")g=1..x €V : thereexistsoc € ®, v" =0 on T¥} C V.

In the following, when writing v = (v*) € H}(2) for an element v € V,
we will refer to such an isomorphism. Moreover, for the sake of notational
simplicity we will write (vF) for (v*)g—i.. r, always assuming that, unless
otherwise stated, the index k ranges from 1 to K.

An observation that will be important in the sequel is the following:
Proposition 3.7.2: It holds

K K 1/2
A= [T "), ||a||N~(Z|a’“|%/2,N) . (37.13)

Moreover, one has that

(i) the space @ can be identified with a proper subset of A', by identifying
o € ® with (o*) € N, 0% = ops;

(ii) for o € ® the equivalences

K 1/2
||U||<I>N(Z|0k|1/2,rk> ~ollys (0" =olwm),  (3.7.14)
k=1

hold.
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Proof: The proof of (3.7.13) follows by standard arguments since the dual of
a Cartesian product of spaces is the product of the duals.

As far as (ii) is concerned, let now o € ® and let v € H{(£2) be any function
such that v = 0 on ¥. Then we have

K K
Z |O.|?/2,F’“ < Z ||U”?{l(ﬂ’“) - ||U||%{3(Q)'
k=1

k=1
Since V' is arbitrary, this yields
K
Do lof o S inf ol = llolls.
k=1 vEH}(Q): v|g=0

Let now u in H}(2) be defined such that —Au = 0 in QF and v = o on I'* for
all k. Then one has

K K
lolls < llullfaw = D lullfngey S X 1ol
» > HL(Q) HY(QF) ~S 1/2,Ik
k=1 k=1

3.7.2 The Three-Fields formulation
We consider the second order elliptic boundary value problem
—diva(z)gradu(z) =f inQ,

(3.7.15)
u =0 on 051,

with a sufficiently smooth and uniformly positive definite matrix a(z) and
[ € Ly(2). To solve this by a domain decomposition approach, for each
ke{l,...,K} let a* : H*(QF) x H'(QF) — IR be the bilinear form induced
by the differential operator on the subdomain QF,

a* (u,v) = / a(x) gradu - grad v dx.
Ok

A composed bilinear form a : V' x V — IR can be defined by

a-,) =Y _d*(--). (3.7.16)
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For all v € H}(Q), a(-,-) satisfies

a(v,v) Z/ )| grad v|* do ~ ||v||H1 (3.7.17)

In alternative to the standard weak formulation of the boundary value problem
(3.7.15),

find u* € H(Q2) such that
(3.7.18)
a(u*,v) = (f, ),  forallv e Hi(Q),

we can then consider the Three Fields Formulation: find (u, A\, ) € VXA x ®
such that

( K
a(u,v) - Z = (f,v)n.@ for all v € V,
k=1
K
< Z<90 —uf, @) =0 for all p € A, (3.7.19)
=L
Z<)‘ka‘7>k =0 for all o € .
. k=1

This formulation was introduced in [23], where it was shown that problem
(3.7.19) has for every f € Lo(£2) a unique solution (u, A, @), satisfying

ub = u* in QF, k=1,...,K,

: ou” K 3.7.20

A= a on 0%, k=1,...,K, (3.7.20)
onk

p = u* on X,

where du*/On* is the outward normal derivative of the restriction of u* to QF.

We can write the system (3.7.19) more conveniently in operator form as
follows. Define A : V — V' by

(Av,v) := a(v,v).

Foreachk =1,..., K, let B¥ : H}o(QF) — Hl/Q(Fk) denote the trace operator.
Let then B : V — A’ be defined by B := diag(B*,..., B¥). Moreover, let
(oL _I/Z(Fk) — @' be defined as

(C*u o) = (U, o),
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and let C' : A — @' be assembled as C' := diag(C*,...,C¥). With these
notations, the system (3.7.19) can be written as follows: find (u, A, p) € V' X
A x @ as solution of

A —-BT 0 u f
B 0 (" Al=1]o0]. (3.7.21)
0 C 0 o 0

Remark 3.7.3: [23] One of the interests for the Three Fields Formulation lies
in the observation that, for given ¢ € ®, the computation of u and \ reduces
to solving K independent Dirichlet problems on the subdomains Q2. Each of
these is of the form

(E YY)

@ can then be computed as the solution of

CA'CTp=CA™ ( g ) (3.7.23)
where
A -BT
A= ( B 0 ) C:=(0 0), (3.7.24)

Here the operator S :== CA~'CT is just the Poincaré-Steklov operator on .

Hence, by applying a Schur complement technique, the solution of the original
problem (3.7.15) or equivalently of the problem (3.7.20), is reduced to the
solution of the equation on the ”trace” unknown:

Sy =g, (3.7.25)

Withg:CA1<“£>.

It has been shown in [23] the following result

Lemma 3.7.4: S is an isomorphism from ® to ®' that satisfies in addition
o (S, e ~ [ 15
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3.7.3 An adaptive wavelet method

Our aim is to solve the continuous linear problem
Sp=g (3.7.26)

by means of an adaptive wavelet method. According to the "new approach” we
first have to transform the initial continuous problem (3.7.26) into an equiva-
lent co-dimensional problem.

To do this let us assume that we have a couple of biorthogonal wavelet
bases for Lq(X)

"va = {léj,mv (]7 m) € V= Uijovj}a (3'7'27)
Y = {wjﬂm (]7 m) €V = UijOVj}7
with the following properties:

(P1) any function o € Ly(X) can be expanded in terms of either e or b,

= Z Z g, wJ, YVim Z Z o, Vjm kil)],m, (3.7.28)

J>jo meV; J>jomev;

((-,-) denoting here the Ly(X) scalar product);

(P2) one has 9;,, € ®, and the following norm equivalence holds

lolls ~ Y2 Y oy, o€ ®; (3.7.29)

j>jo  meV;

(P3) ¢ and 1 have local support, i.e.,

diam(supp ©;,,) ~ diam(supp 1/;Jm) ~ 277, (3.7.30)

There are by now a number of constructions of such biorthogonal wavelets
[34], [25], [42], [43] that can be applied to the present setting. In particular
we refer to [15] for a a particularly simple construction which, in the two-
dimensional case, is sufficient for the present purpose.

Now we decompose the functlons ¢ and Sy, by choosing two suitable

rescaled versions {¢, %} and {4, w} of the given pair of biorthogonal wavelet
bases {1, 1}, such that

pEC =303 Gimlim  Uim =2

J>Jo meV;
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Sp € @ Sy = Z Z Sj,mlﬁj,m, 1/A)j,m = 2j¢j,m-

Jj>jo mev;

Now we build an co-dimensional operator & which acts on wavelet coefficients
as follows:

S:o={@imbim = 5= {sjm}jm- (3.7.31)

Thanks to (P.2), the above operator S is an isomorphism from ¢? onto ¢*:
S0t 2
Thus to solve the continuous problem (3.7.26) is equivalent to solve

Sp =g,

where ¢ € (% is the infinite vector of the wavelet coefficients of the unknown so-
lution, while the infinite vector g = {9jm}jm, contains the wavelet coefficients
of the function g € @'. B

Now let us consider the following S-nonlinear Richardson scheme for
the solution of the oo-dimensional problem Sy = g:

given go
for:=0,...

1. Compute (S¢').,

12

approximation to S¢*, with precision ¢;.

2. Compute gi“ =Py, (gi + 9(g - (Sfi)ei)
end

where the nonlinear projector Py,
wavelet coefficients.

., retains the N;; largest, in absolute value,

It is important to remark that computing (S¢*).., approximation to S¢',
is equivalent to approximately solving K decoupled Dirichlet problems, where
K is the number of the subdomains. This will in general be done by applying
an adaptive solver (not necessarily of wavelet type).

We analyze such a nonlinear Richardson-type scheme, as an element of a
more general class of algorithms, which we present in the next section within
an abstract (not necessarily wavelet) framework.



Section 3.8. An abstract framework for Nonlinear Richardson-type algorithm 95

3.8 An abstract framework for Nonlinear Richardson-type algorithm

Assume X and Y are quasi-normed spaces, with Y continuously embedded into
X, and that {Sn};>0 and {T},>0 are two unrelated sequences of nonlinear
approximation spaces

SoC...CSvC Sy C...CY CX,

TyC..CTy CTyC...CYCX,

such that for some s > 0 (s is called rate of convergence) one has Jackson-type
estimates, for all f € Y

distx(f, Sy) = inf |[f — gllx < N I|f]ly, (3.8.1)
geESN

distx (f, Tar) = inf ||f —gllx S M [ flly (3.82)
g€T'ns

and Bernstein-type estimates
£y S N°IIfllx if f € S, (3.8.3)

Iflly S M°||fllx if f € T (3.8.4)

Moreover assume that

Sy + Sy C Syan, N >0,
Ty + Ty CTypepr, M >0, (3.8.6)

and there exist two nonlinear projectors

IEDN X — SN; (387)
and
which are quasi-optimal
If =Pnflix S distx(f,Sv) S N°Iflly, feX, (3.8.9)
If = Qufllx < distx(f, ) S M7°[[flly, feX,  (38.10)

and X, Y-contractive:

IPx(F)llx < [Ifllx, PN ()Ily < £l (3.8.11)
1Qu (Nlix < Ifllx,  1Qu (Nlly < [Ifly (3.8.12)
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Finally we suppose that Py, are such that for all f € X there exist SJ{Q- C Sy,
linear subspace of Sy, and

Iy, 0 f € X =Ty (f) € 5§ (3.8.13)
bounded linear projector, such that

x; (f) = P, (f)-

Let now consider the continuous linear operator £ : X — X such that when
it is restricted to more regular space Y, which is continuously embedded into
X, it preserves such regularity:

£|y Y =Y.
Let us assume that

(S.1) there exists 6, such that for all # with 0 < 6 < 6, it holds

1= 0L ox < i< 1, (3.8.14)

(S.2) there exists an approximation strategy for Ly such that for all ¢ > 0,
there exists a (L), with

(Ly)e € T, M, depending on ¢, (3.8.16)
satisfying the following inequality
Lo = (Lo)ellx <ellellx, (3.8.17)
for all p € X.

The approximation strategy for Ly can be regarded as a black-box approx-
imation strategy satisfying inequality (3.8.17). For instance, in the context
of three-field formulation, it has been studied [14] a finite element based ap-
proximation strategy for Sy € @', where S is the continuous Steklov-Poincaré
operator, such that for every € > 0 it exists a (Sy). verifying

IS¢ — (S@)cller < eIl

By using norm equivalences, the above inequality can be equivalently restated
in wavelet coordinates

18 = (S@)ellex < ellllez-
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Generally no a-priori information is available about the relation between the
tolerance € and the number M, of degrees of freedom used to build the ap-
proximation. anyway nonlinear approximation provides a natural benchmark
for this kind of relation and in view of this we give the following definition of
optimal approximation strategy.

Definition Let s be the rate of convergence associated to the sequence {Th}u
of nonlinear spaces of approximation. The approximation strategy in (S.2) is
said to be optimal if

feX —eM) <K,

for all € > 0.
We are interested in the following
Problem 3.8.1: Given f €Y, solve the linear equation
Lo=Ff. (3.8.18)

In particular, given a number N > 0 of degrees of freedom, we are interested
in finding an approximation @5 € Sy to the exact solution ¢* of (3.8.18).

We consider the following £-nonlinear Richardson scheme:

given ¢° € Sy,
fori=0,...
1. Compute (L"), € Tar.,
2. Compute QOH_I =Pniyy (Qpi +0(f — (,Cgpl)gl)) S SNi+1

end

Remark 3.8.1: [t is important to remark that the above scheme is able to
couple two eventually different approximation strategies (e.g. finite element-
wavelet or finite element-finite element) into an iterative procedure, one strat-
egy coming from the choice of the nonlinear spaces {Sn} and the other from
the choice of the nonlinear spaces {Ty}.

Let us now prove the following result
Lemma 3.8.1: If the sequence {¢;} is chosen such that
o+ 0z < 1, (3.8.19)

then the L-nonlinear Richardson is X -stable.
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Proof: Using the X-contractivity of the nonlinear projector Py and
assumption (S.2) yields

1o x = Py, (08 4+ 0(F — (L)) llx
< |l* +0(f — (Le')e,)lIx
< (I = 0L)¢" ||x + 0l(Lg')e;, — L& x + 0l fllx
< pll@’llx + Ozl llx + 011 fll x
< (p+02) ¢’ llx + 01 fllx

By iterating the above inequality we obtain

Il < el Ty e+ O20) + 011l Do+ 6%, (3820
k=0

which yields the inequality
le"lx < Cx, (3.8.21)
if we choose {g;} such that

pw+0e; <np<l.

Let us now discuss the Y-stability of the algorithm.

Lemma 3.8.2: Under the assumption of Lemma 3.8.1, if the sequences { Ny}
and {e} are chosen in such a way that

D W TEN ek < o0, (3.8.22)
k=0

then the L-nonlinear Richardson is Y -stable.

Proof:  Using the definition of the linear projector Ily,,  yields

Il = [Pr, (6 + 007 = (£69)2)) Iy
= My, (6 + 67 = (£6)20) Iy -
< My, (0 + 007 = £y + 01l (L6 = (£6)2) Iy

As I (Lo" — (L4Y)e,) € Sn,,,, then by using Bernstein inequality (3.8.3), we
have

ey < (T = 08)élly + 0 flly + Ni L6 — (L),

X-
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Then assumptions (S.1) and (S.2) yield
1™y < plllly + 01 flly + Niyeille'llx
< plle'lly + 0l flly + Cx N7y
By iterating the above inequality we obtain
i 0
le™ My < w1l + Cx > T Nk + —— 1 fllv-
k=0 L—p

Hence the property .
Iy < Cy

follows if we choose the sequences { Ny}, and {e;} such that

o0

i—k nTs
E p N e < 00.
k=0

Theorem 3.8.1: Under the assumptions of Lemmas 3.8.1 and 3.8.2, if the
approzimation strategy for Lo s optimal, then the following error estimate
holds

i i
e = ellx £ D2 i N+ i =l + D e, (3.8.23)
k=0 k=0

with < 1 and all the constants depending only on the initial data.

Proof: By using Jackson estimate (3.8.1), we have

7~ pllx < | @rss = DS+ 00~ (Le)llx
HIT =006 — Qs +0lLe — (Ehllx
< Nl +0(f = (£e):)ly + plle’ — @llx + Oeill"|| -

Let us now estimate the term

U = ||+ 0(f — (Le"):)]lv-

We have

U< (1= 0L)5 ly + 0(L)., — L'y + 6l
< gflly + 01l (L)e, — £y + 01l
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If we denote by M.. the number of degrees of freedom used to build (L¢").,,
then

Qur., (L¢') € T,

with #T;.,) = M(s;), provides a quasi-optimal M, -term approximation of
L in the norm of X.
It follows that

U < Alle'lly +0I1(£e"):; — Qu, (Lo)lly +0l1Qus,, (L") — L |y + 01l

Remarking that Q. (L¢) — (£¢')e; € Tan,, allows to use Bernstein-type
inequality (3.8.4) which gives

1Qus., (L") = (Lelly S (2M)°]|Qur,, (L") = (L), L x-

Hence, by using Y -continuity of the operator £, we have

U <Al ly +02M:,)°|(Lg")e, — Qui,, (L) x
+0)|Qur.. (Lo") — L |y + 0l flly
S Al lly +0@2Me,)* (L9, — Qur, (L") x
+20/1L¢" |y + 0| f[Iy
S Ay +02M.,)* [I(L£e)e; — L&' x + 1£6" — Que., (L)1 x]
+2C0/[" |y + 0l flly-

Now using assumption (S.2) and quasi-optimality of the nonlinear projector
Py together with Jackson-type estimate (3.8.1) gives

U S AN lly +02M:) e |9 x + 0(2Me,) M| £y
200]¢"lly + Ol v,

where C'is such that ||Lo|ly < C||¢]ly, for all ¢ € Y.
Thanks to Y-continuity of £ and to X-stability (3.8.20), we obtain the follow-

ing inequality

U S (v +20C +0C"2°) || |ly + 0Cx (2M.,)°e; + 0] f | x,

where C" is such that ||Lo||x < C'||¢]|x, for all p € Y.
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By using Lemma 3.8.2, we finally obtain

lo" +0(f — (L") )ly S (v +20C +6C"2°)Cy

Now we go back to the error estimate.
It follows

I = ellx S Nign{ (v +26C +6C"2°)Cy + 62°Cc M2 + 6 £ |
+ulle" = ellx + Oill’ | x-

Finally, by iterating the above inequality and by using X-stability, we
obtain the following error estimate

[+ Zu“ N (200 +0072)Cy 10205 M e+ 0] £l )

7
e = gllx +0Cx Y p ey
k=0

Hence, as we assume that the strategy for L is optimal, i.e.
eM? <K,

for all £ > 0, the thesis follows.

Definition We say that the L-nonlinear Richardson scheme is optimal, if
it exhibits, after i + 1 iterations, an error reduction by a factor p'**.

We now need to choose the sequence {N;} of degrees of freedom to be retained
at each iteration of the scheme and the sequence {¢;} of the tolerances re-
lated to the approximation of L¢?, in order to guarantee the optimality of the
scheme. To do this, we impose a sort of ”"balancing” between the terms of the
sums in equation (3.8.25), in such a way that all contributions to the error has
roughly the same order

i i
i+1 i—k i—k nT—S
NE It acNE P NG B

where

Bi = (7 +20C + 0C"2)Cy + 02°Cx M (e1) e, + 0] f | x-
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Let us suppose that the approximation strategy for Ly is optimal, then S is
uniformly bounded, otherwise it could be unbounded.

Since
i i
ik il —k—1
E BEe = [ E H €ks

the tolerances ¢, should then be chosen in such a way that

+00

Zufk*lek < +00.
k=0

It is not difficult to see that this holds for instance for the choice

k+1
1

" klogk’

€k

Analogously we will choose Ny, such that

klogk\Y*
NM:(M) _

k+1
Lkt

Remark 3.8.2: If the approzimation strategy for Lo is not optimal, i.e. {By }x
s possibly unbounded, then roughly speaking the choice of Nii1 will have to
compensate, at each iteration k, the loss of optimality. The result is a more
quick growth of { Ny}, than in the optimal case and in a loss of the optimality
in reducing the final error.

3.8.1 An application: the Three-Fields formulation

Now we apply the above setting to the particular case of three-field noncon-
forming domain decomposition method.

Assume that the strategy for computing (S¢). falls in the framework de-
scribed in the previous section. This basically reduces to saying that the type
of discretization spaces used for approximating the Lagrange multiplier verifies
Bernstein and Jackson inequalities of the type (3.8.2) and (3.8.4) and that the
adaptive strategy guarantees a prescribed error on the Lagrange multiplier.
This holds for instance if free-knot splines [74] are used to approximate the La-
grange multiplier, together with a-posteriori error indicator proposed in [14].

Then using Theorem 3.8.1 yields the following Corollary

Corollary 3.8.1: Let S : (* — (* be the oo-dimensional linear operator asso-
ciated to the three-field formulation. Assume there exists a 7, with 0 < 7 < 2,
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such that S is an isomorphism from (™ onto £™. Under the assumptions of Lem-
mas 3.8.1 and 3.8.2, if the approximation strategy for Sy is optimal, then the
S-nonlinear Richardson scheme is (%-stable and the following error estimate
holds

i 7
o™ —ollx S u NG + i — zllx + Y prer,  (3.8.25)
k=0 k=0

with p < 1 and all the constants depending only on the initial data.

3.9 Open problems and perspectives

Nonlinear Richardson type algorithms could be applied in a quite wide class
of situations including non-conforming domain decomposition methods, but
a deeper study in this direction, including probing numerical experiments, is
necessary. Such nonlinear algorithms are attractive in the sense that the user
is able to control the number of degrees of freedom (and therefore the memory
size and complexity) at each iteration, but they also suffer from the following
drawback compared for example to the adaptive wavelet scheme proposed in
[31]: all the parameters involved in the fine tuning of the algorithm depend
on the number 7 < 2, which describes the degree of sparsity of the solution in
the wavelet basis, in the sense that the coefficient sequence belongs to ¢}, or
equivalently the order of convergence of the nonlinear projection algorithm is
N—*/4 with s/d = 1/7 — 1/2. This means that in order to converge with this
optimal rate, the algorithm requires an a-priori knowledge on the smoothness
of the solution which is somehow the opposite of adaptivity. Another drawback
is that the range of the convergence rate which can be considered is limited by
some condition 7 < 7, where 7 could be much larger than the actual degree
of sparsity of the solution. This comes from the fact that all the proofs rely
on a contraction property of an operator in the /7 norm, which is known to be
contractive in /2 and bounded in the ¢ norm for some arbitrarily small 7, and
therefore contractive in ¢7 by interpolation, for 7 sufficiently close to 2. Since
there is no clear estimate on 7, it could well be that the rates of convergence
which can be achieved by the algorithm are quite deceiving compared to the
optimal rate of nonlinear approximation, except when the solution is not so
sparse (in which case a uniform method would work as well).
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Chapter 4

ADAPTIVE SCHEMES FOR
NONLINEAR EQUATIONS

"The realm of Sauron is ended!” said Gandalf. ”The Ring-bearer has fulfilled
his Quest.” And as the Captains gazed south to the Land of Mordor, it
seemed to them that, black against the pall of cloud, there rose a huge shape
of shadow, impenetrable, lightning-crowned, filling all the sky. Enormous it
reared above the world, and stretched out towards them a vast threatening
hand, terrible but impotent: for even as it leaned over them, a great wind
took it, and it was all blown away, and passed; and then a hush fell.

(J.R.R. Tolkien, The Return of the King)

4.1 Introduction

The aim of this chapter is to show how it is possible to apply nonlinear wavelet
approximation to design wavelet based adaptive schemes to solve a general
class of nonlinear problems.

The iterative methods, that we propose to find a solution to a given non-
linear equation

F(u) =0,

are Inexact Newton-type methods: given wug, u,41 is computed as follows:
Upy1 = Up + Pn,

with p,, approximation to p,, where p,, satisfies F'(u,)p, = —F (u,) and F'(u,,)
is the Fréchet derivative of I at u,,.

In designing such adaptive methods we follow the oco-dimensional "new ap-
proach” (see Introduction) already used to design adaptive methods for linear
equation (Chapter 3). In the nonlinear setting such an approach reads as
follows:

105
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1. transform the initial nonlinear continuous problem F(u) = 0 into an
equivalent oco-dimensional nonlinear problem F(u) = 0, whose unknown
u is the infinite vector of wavelet coefficients of the solution.

2. write down a convergent Inexact Newton-type iterative scheme for the
oo-dimensional problem.

3. at each iteration approximately (possibly adaptively) apply the involved
infinite dimensional operators to finite dimensional spaces.

Here, as already mentioned in the Introduction, we don’t face the problem of
the effective construction of the approximate application of nonlinear operators
in wavelet coordinates [29]. We rather consider it as a ”black-box” strategy
and we provide a recipe for a dynamically choice, as the iteration procedure
progresses, of the involved tolerances, in order to guarantee the efficiency and
the convergence of the resulting algorithm.

4.2 Notations and Preliminary results

Let Q C R be a Lipschitz domain. We will denote by (-, -) the L*(Q) scalar
product. For sequences v € (%, we will denote by Z¢(v) the ball of centre v
and radius § in ¢* topology: Z§(v) = {u € ¢*: ||lu—ul[e= < 6}. For functions
v € H*(2), we will denote by I¢(v) the ball of centre v and radius § in H*((2)
topology: Ij(v) ={u € H*(Q): |lu—v|ge) <}

Now let us assume we are given a couple {10y, A € A =U;>A;}, {y, e
A = U;>0A,;} (A; finite dimensional) of biorthogonal bases for L*((2), satisfying
the following properties:

(W0) Any function f € L?(Q) can be decomposed in terms of either one of the
two bases as follows:

F=) (f00)0n =Y _(f, 1) n (4.2.1)

AEA AEA
(W1) For any f € By (2),0<s5<5,0<p<o0,q>0 the following norm
equivalence holds:

q/p

I eallly, @ = D22 ST (faP ] (422)
A

J )\EA]'
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Remark 4.2.1: The splitting of the index set A as A = Uj>o/\; indicates that
the basis function ¢y (and ) are “living” at different scales: X € A; <

supp(1) ~ 279 ~ supp(i).

Remark 4.2.2: We remark that (W0) implies that the two bases are “biorthog-
onal” in the following sense:

(1/;/\7 Ya) = 0w, AN €A =UjsA; (4.2.3)

Describing how bases satisfying assumptions (W0)-(W1) can be constructed
is beyond the goals of this work. We want to stress out that biorthogonal
wavelets fall in the class here described [38], [32], [25] and therefore they will
be used throughout this chapter.

In the setting of biorthogonal wavelets we denote by uy := (f, ) the wavelet
coefficients in the expansion f = >, (f,¥x)¥s. Hence the norm equivalence
(4.2.2) for Besov spaces By | rewrites as follows: for all 0 < s < 5,0 < p < o0,
qg>0:

q/p

st+d(3-21))j
%;,q(ﬂ) ~ Z2q( +d(3—3)) Z |uy [P ) (4.2.4)
J

)\EA]‘

1) uaiin
X

In particular, since H*(2) = B3 ,(€2), from equivalence (4.2.4) we deduce that
forall0<s<S:

1> w2

J AEA;

~ Jlulle. (4.2.5)

where u = {uy}x.

Now let us briefly recall some results about nonlinear approximation in
a wavelet framework. In such a setting a given function v € L?(Q2), whose
wavelet decomposition is u = Y, uxty, is approximated by a lacunary series:
u is approximated by an element v belonging to the nonlinear space

Yy = {’U = ZU)\Zb)\ o= {'U)\})\EA € O'N}, (426)

AEA

containing all the functions of L?(f2), whose wavelet coefficients belong to the
set

oy ={vel?(N): #{\:vy#£0} <N}
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of sequences with at most NV elements different from zero. The set X contains
the functions of L?(Q), which can be expressed as a linear combination of at
most N wavelets. A nonlinear projector

IEDN : Lz(Q) — EN

can be built as follows: given u =), uxty, let us sort the sequence {|uy|}rea
in decreasing order. We denote {|u)|}ren the coefficient of rank &:

[uag)| = |uage+y|,  with k> 0.

Hence the image Py (u) is defined by:

N
Py (u) =) unm®rn):
n=1

that is only the IV greatest (in absolute value) coefficients of u are retained. By
abuse of notation we will also indicate by Py : £ — oy the operator associ-
ating to the sequence u = {u,}, the coefficients of the function Pn (>, uxt)y).
The accuracy of the corresponding approximation is directly related to ¢™ reg-
ularity of the sequence of coefficients of u, as stated by the following theorem
[47], [48]:

Theorem 4.2.1: Let u = Y,y uatx. If u = {ux}x € 07, with 7 such that
0<T1<2, then

lu —Pyulle S inf Jlu—wlle SN G2 ule,

~Y
WEoON

where the constants in the bounds depend only on T.

In particular, if 7 is such that % =4 %, using norm equivalence (4.2.4), we

: d
obtain

I ZUA¢A|
A

and from Theorem 4.2.1 we have that if u belongs to Bl (€2), with 7 such that

1 _r 1
~ =4+ 3, then

Br(2) = ||uller (4.2.7)

2| lul

) (1
inf |lu — w2 S |Ju — Pyullp2) SN (7

~/ B‘IS',T(Q)‘
weX N

In other words, once we normalise in L?(§2) the wavelet basis {1}, the natural
functional setting of nonlinear approximation in L?(2) is the scale of Besov
spaces B] ().
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Let us now consider a rescaled version {x}x of the wavelet basis {1}y,
where ¢y = p™5¢y, for A € A;. If 7 is such that % =5+ %, from norm
equivalence (4.2.4) we obtain:

1D uxthall pres oy = lluller- (4.2.8)
A

Applying now Theorem 4.2.1 and norm equivalence (4.2.5) for Sobolev spaces
to the normalised sequence u, we obtain the following result of nonlinear ap-
proximation in H*(€2):

Corollary 4.2.1: Let u € BJ17(2), with T such that 1/7 =r/d+1/2, then

. _(i_1

lu=Bxullgs) S inf Jlu—wlms@ SN2 |ufl g )
wWEX N

where the implicit constants in the bounds depend only on 7.

That is when we consider nonlinear approximation in H*({2) the natural func-
tional setting is the scale of Besov spaces B t*(€2), where 7 is defined by the
relation £ =% + .

4.3 Inexact Newton methods

Let €2 be a Lipschitz domain in R and U be an open subset of the Sobolev
space H*(£2). Given a nonlinear functional between Sobolev spaces:

F:UCH*(Q) — HY(DQ),
we want to solve the nonlinear equation
F(u) = 0.

A classical algorithm for solving nonlinear equations of type F(u) = 0 is
Newton’s method: given wuy,

Uj1 = Uy + x5, with F'(ul)xl = —F(U,l),

where F'(u;) is the Fréchet derivative of F' at u;.

The method is attractive because it converges rapidly, whenever the initial
guess uy is sufficiently good. In [46], [85] a generalization of such method has
been considered:

Inexact Newton methods:
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begin
input: wg

for 1+ =0,1,...
find s; which satisfies

F'(u;)s; = —F (ug) +r;
set U1 =u; + 58
end
output: U = u;1
end

in which at each iteration ¢ the involved equation F'(u;)w = —F(u;) is solved
only approximately, because of the presence of the perturbative term r;, which
is possibly related to different sources of error.

In order to obtain the convergence of a general inexact Newton method,
according to [85], we assume that F satisfies the following conditions:

(A.1) There exists a solution u* € U of F(u) = 0, with I}(u*) C U, for some
6 > 0.

(A.2) On the ball Ij(u*) the functional F' is Fréchet differentiable and its
Fréchet derivative F” is continuous.

(A.3) At u* the Fréchet derivative of F is not singular.

(A.4) There exist A € [0, 1] and K > 0 such that for all u,v € I$(u*):

1" (")~ (F" () = F'(v))]

o)) < Klju — U||?1s(9)-

It has been proved in [85] that under assumptions (A.1)-(A.4) on the regularity
of F', if the perturbations r; are chosen in a suitable way, then the sequence
{u;} converges in H*(2) to a solution u* of F'(u) = 0, for any starting point
up € U sufficiently close to u*:

Theorem 4.3.1: Let F : U C H*(QY) — H'(QY) satisfy assumptions (A.1)-
(A.4) and r; such that:

[(F" (i) ™"l s (o
(" () L F ()|

<v<l, foralli. (4.3.1)

H2(Q)
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There exists a 05 > 0 such that, if ||uo — u*||gs(q) < 05, then the sequence {u;}
of inexact Newton method converges to u* in H*(2) and satisfies

1@ (4.3.2)

Uiyl — U ||H3(Q Pi||Ui — U
| Nas0) < pill |

with \
(1 + v)pa(u)|luo — u*[|3sq)
el Rt
L+ )1 = pa(w)|luo — u*||3s (@)

mép:{l/+(

Let us define

£ (u?) " (F'(v) = F'(w))]

lv = wlizs

pa(u®) == sup{ Mo w4 w,v,we I;(u*)}

In order to prove Theorem 4.3.1 we need the following two results:

Lemma 4.3.1: Let F : U C H%(Q) — HYQ) satisfy assumptions (A.1)-
(A.4). Then there exists a o, with o < 0, such that F'(u) is not singular for
all w € I3 (u*) and the following inequality holds

1F" () = (F (v) = F'(w))]

for all v,w € I5(u*).

pox(u*)
1 — px(u*) |lu — u*|| gs

Hs—Hs <

Yo, (4.3.3)

lo = wl

Proof: Consider the case A > 0 and A = 0 separately.
If A >0 and ||u— u*||zs < pa(u*)™A, with u € I§(u*), then

[ =F'(u) " F' (u) || s = [ F'(u) 7 (F () = F' ()| zroms e < pua(u) Ju—w| s < 1

and thus the Neumann series

F'(u) ™ = (I = F'(u’) " F'(u))"F'(u*) "
converges. Hence, as
F'(u)™H(F'(v) = F'(w)) = F'(u") " (F" w)) Y [ = F'(u’) " F' (u)]",

inequality (4.3.3) follows from the definition of riy(u*).

Now consider the case A = 0. By continuity of F" at u* it is clear that pq(u*)
can be made as small as desired by making ¢ sufficiently small. Hence it follows
that for o sufficiently small and u € I¥(u*), we have ||[I—F'(u*) " F'(u)||gs < 1,
so the result once more follows as above. "
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Lemma 4.3.2: Let F : U C H*(Q) — HYQ) satisfy assumptions (A.1)-
(A.4). Then for any u € I13(u*), where o is chosen accordingly with Lemma
4.83.1, the following inequality holds

L Y Bl — ) (" — ) pox(u)|Ju — u||1+,\
|F'(w) 1 (F(u*) — F(u) — F'(u)( N < 1+ N1 — pa(w)

s
(4.3.4)

Proof:  Define H : I¥(u*) — H'(Q) by H(z) = F'(u)"'F(z), where o is
chosen accordingly with Lemma 4.3.1. Then, by Lemma 4.3.1, we have
[H'(v) = H' (W)l msosme = [[F'(w) " (F'(v) = F'(w)) |5 s

pix (u”) A
v—w||gys, (4.3.5
SN ee] ey PR

for all v, w € I:(u*).
Now, by using [[72], Lemma 3.2.12] together with an appropriate definition
of the notion of integral [64], it follows
1F"(w) ™M (F(w") = F(u) = F'(u)(w" ~ U))||Hs
= [|H(u") = H(uw) = H'(u)(u" —u)||u

_H/ (H'(u + (" — ) — H' () (u"

Hence using inequality 4.3.5 yields

H/ (w4 Hu® — ) — B () (u

< / 1 (u+ t(u" = w)) = H'(u) ||z " — ul| o dit
0

* 1
< 720 [t ) = wle o —
fx(u”) [ /lt’\dt
T () =l :
()= o3 "

TN = ) o = ullys)

Proof of Theorem 4.3.1:  Set §, := o, where ¢ is chosen accordingly to
Lemma 4.3.1. The proof is by induction.
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Assume [|u; —u*||gs < [|uo—u*||gs < ds, for some i > 0. Then u; € I (u*),
hence, by Lemma 4.3.1, F'(u;)~" exists. Thus the i-th stage of the inexact
Newton method is well defined. Now s; = F”(u;) ™' (—F (u;) + r;) and hence

Uiy —u* = u;p + F'(u) H(=F(u) + 1) —u*
= F'(u;) N (F(u*) — F(us) — F'(w)(u* — ug) +13).

Since the following two inequalities hold

| F" (ui)ri|
| F" (i) ™" F (us)]

V|| F' (u;) 7 F (i) || s,
1F" (i)~ (F (u") = F(u;) — F'(ug)) (0" — ;)]

s <
<

HS ms + |lui — uw|| g,

we conclude that

ps (L) | ()~ (F (w") = F () = F" (w;)) (u” =) || s
(4.3.7)

i1 —u"|[ s < vlju—u”|

Using inequality (4.3.4) yields

1+ )y (w)||ui — w*||%s *
(1 +v)ua(w)] . )}Hui—u lie, (4.3.8)

Ujpp — U sg{l/+
iy = e T+ N = (e — [,

and by choosing

0, := min {U, <%MA(U*)1>I/A}

we have {V 4l } -1

(LX) (L= pox () s —u*[[3y)

Thus it follows

wiv1s — u*||gs < ||ui — u*||ms,

which yields by induction

TNy Pt A VA
(00 — ) uo — w ) S

[wivr — u||as < {V+ Hs)

for all 4. -

Remark 4.3.1: From Theorem 4.3.1 one has that u; € Ij (u*) for all i.
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4.4 Nonlinear Newton

44.1 The problem

Let U be an open subset of the Sobolev space H*(€2), s < S. Consider a map
between Sobolev spaces:

F:UCH(Q) — F(U)CH' ), t<S&. (4.4.1)
We want to find a solution u* to the nonlinear functional equation
F(u) =0, (4.4.2)

using an adaptive wavelet method based on an inexact Newton scheme; then
we assume that F satisfies assumptions (A.1)-(A.4).

Moreover we assume that F', restricted to more regular spaces, preserves such
regularity:

(A.5) For some r > 0 it holds
Fynpstry : UN BT (Q) = BT (Q), st <8,
where 0 < 7 < 2 is such that 1/7 =r/d +1/2.
Finally we assume that:

(A.6) The solution u* belongs to U N Bt ().

Remark 4.4.1: From Corollary 4.2.1, as by assumption u* belongs to Bﬁj;”(Q),
it follows that

* * (-1 *
lu* — Pyu®||gs) S N (= 2)||U |

where Py is the non linear projector which retains the N greatest, in absolute
value, wavelet coefficients of a given function.

Fixed a number M of degrees of freedom, our aim is to provide an approzima-
tion
’U,;(VI € X
that is u}, is built using at most M wavelet functions.
We would like an approximation u}, behaving possibly as well as the best
M terms wavelet approximation Py, u*.

To achieve this goal, according to the abstract approach described in Sec-
tion 4.1, we first translate (4.4.2) in terms of wavelet coefficients, thus obtaining
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an co-dimensional problem: we decompose the involved functions u and F'(u),
by choosing two suitable rescaled versions {t¢),} and {,} of the wavelet basis

{¥n}:

uw€ H(Q), u=)Y uyh, with th =27, (4.4.4)
A

F(u) € H(Q), F(u)=>_ fahr, with ¢y =27"), (4.45)
A

and we build a discrete version F of the mapping F', acting on wavelet, coeffi-
cients as follows:

Fru={u} — F(u) = f ={fn}. (4.4.6)

Thanks to norm equivalence (4.2.5) for Sobolev spaces, the previous map
F results to be a mapping between ¢? spaces:

F:DCrF— 2 (4.4.7)

Moreover, using norm equivalence (4.2.8) for Besov spaces, assumption (A.5)
implies that JF, restricted to a more regular space, preserves such regularity:

fDﬁgr:DmgT_)éT,

with 0 < 7 < 2 such that 1/7 =r/d+1/2.
Then solving the co-dimensional problem F(u) = 0 is equivalent to solving
the initial continuous problem F'(u) = 0.

Thanks to assumption (A.6) there exists u* € D N {7 such that F(u*) =
0. Nonlinear approximation provides with a natural benchmark for adaptive
schemes; indeed if we knew u*, then it would follow, by using Theorem 4.2.1,
that ||u* — Pyt |le < M~G=9)||u*||e-. But u* is the unknown of our problem,
so we do not have access to Py,u* exactly. Hence, given the number of degrees
of freedom M, what we actually want is to design an adaptive scheme which
builds an approximation u}, to u*, with

Q*;\/[ GUMa

such that u}, behaves almost as well as Pyru*.

4.4.2 The algorithm

The adaptive scheme we propose here, namely Nonlinear Newton, is an Inex-
act Newton-type method written for the co-dimensional problem F(u) = 0, in



116 Adaptive schemes for nonlinear equations  Chapter 4

which, at each iteration i, the approximation u,_ , is forced to belong to a non-
linear space oy, ,, that is it is forced to be built using at most N;;; degrees of
freedom, where N;,; is chosen accordingly to the accuracy of the approxima-
tion u; at the previous step. Moreover at each iteration ¢ two further sources of
inexactness are introduced to deal with the problem of the approximate (pos-
sibly adaptive) application of infinite dimensional operators: A; will denote an
approximation to F! := F'(u;) and F; an approximation to JF; := F(u;). The
rate of these compressions will be adapted, at each iteration i, to the accuracy
(and hence to the number N;;; of d.o.f.) of the approximation u,,, that we
want to build. The method we propose is the following:

Nonlinear Newton
input: M, u,
set 1 =0

repeat the following steps
compute A; approximation to
compute F; approximation to F;
choose N,
set
Uiy =Py, (u; — A

update 1 +1 — 1

until NV, = M

where Py, , is the non linear wavelet projector, which forces u;,, to belong to

the non linear space oy, , .

4.4.3 The analysis of the method

First of all we note that Nonlinear Newton can be rewritten as an Inexact
Newton scheme:

begin
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input: M, u,
set =0

repeat the following steps
choose the perturbative term r;
find s; which satisfies

]:i,§i =-F+r;
set u;y, =U; +5;
update i+1 —1
until Ni—i—l =M
end
with
r;=Fi = F(AT Fi+ (I = Py, ) (w; — A7 F)). (4.4.8)

Indeed the following equalities hold:

u+s; = w + (F) H(=Fi+r)
= u+ (F) (=Fi+ Fi— FAFi+ (I =Py (w — A1 F)))
= w — (A7 Fi 4w, — A7VF = Py, (0 — A7)

]P)Nv_H (Mz - A;l-fz)

12

The perturbative term r, takes into account, at step ¢, the different sources
of inexactness: the non linear projector Py, , the approximation A, and the
approximation JF;. Step by step, we can tune such sources of inexactness in
order to build adaptively the approximate solution u;. Roughly speaking when
u, is far from a solution of F'(u) = 0, we can perform the step of our method
employing high perturbative term (r, is large), using instead a lower pertur-

bation when wu; is nearer.

More generally it is useless to build a bad approximation with a fine reso-
lution or a good approximation with a coarse resolution. In both cases we use
a resolution which is not of the same order as the approximation. The right
choice, if we want to obtain an efficient scheme, is to adapt the resolution to
the quality of the approximation, that is to its distance from the exact solu-
tion, in such a way to reduce the computational cost, but not to loose at the
same time the convergence.
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The advantage of the reformulation of Nonlinear Newton as an inexact
Newton scheme is that we can use Theorem 4.3.1 to prove that Nonlinear
Newton converges in ¢”. In order to apply Theorem 4.3.1 we need to assume
in (7 conditions on the regularity of F similar to (A.1)-(A.4):

(B.1) There exists u* € DN {7 verifying F(u*) = 0, with Z] (u*) C DN (7, for
some § > 0.

(B.2) On the ball Z] (u*), the functional F is Fréchet differentiable and its
Fréchet derivative F' is continuous:

F e CNTF(u*) C o, L(em,0m)).

—~
os;
w

~—

At u* the Fréchet derivative F' is not singular.

4) There exist A; € [0,1] and K, > 0 such that for all u,v € Z](u*) it
holds:

|7 (w) ™ (F' () — F () ler—er < Ko |lu— vl

We recall that convergence in ¢, for 7 < 2, implies convergence in /2. However
in general we can hope that convergence in ¢? is faster than convergence in /7.

Assumptions (A.2)-(A.4) on F translate into the following assumptions on F:

(B.5) On the ball Z}(u*), the functional F is Fréchet differentiable and its
Fréchet derivative F’ is continuous:

F e CUI; (u*) C 6, L(%,0%)).
(B.6) At u* the Fréchet derivative F' is not singular.

(B.7) There exist Ay € [0,1] and K, > 0 such that for all u,v € ZZ(u*) it holds:
17/ () 7 (F (@) = F'@)lleser < Kollu— vl

Let us now collect the following two Lemmas: the first one, dealing with non

singularity of the Fréchet derivative, is the analog of Lemma 4.3.1:

Lemma 4.4.1: Let F be a mapping from D C (2 into (%, satisfying conditions
1
from (B.1) to (B.7), for some 7 < 2. Let p = [ =n02X7F where

5 = max { sup{ |17 (w") " (F'(w) = F'(0) lerer vy e (W)
llu — vl :
Sllp{“f (Q ) (f (Q) _)\f (Q))HKZ—%ZQ 7& v,u,v € I(?* (Q*)}}
| — |5

Then for all u; € T;(u*) (which implies u; € T:(u*)), it follows that F| :=
F'(u;) is not singular.
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The second contains a classical result about perturbation of linear operators:

Lemma 4.4.2: Let A* and C be two linear and continuous operators from (>
into (2. Moreover suppose that A* and I + A*~'C are not singular, then the
following inequality holds:

1A +0) " = A o < (A +0) el A e ICllene (4.49)
Proof: We have the following inequalities:

(A" +C)7 = A e

=[|I+A1C) A= A Y pe

= [T+ A0 = A ez

||[(I—|— A7) - T+ AT M I+ A0 A e
(I+ A 1C) (I —I - .AAC)AAH@%@

(I+ AT C) A leselCllese A e se

(A +C) HesellClese A e e

<
<

Let us suppose that the approximation A; ' to (F/)~! has the following form:

AT = (F+BEF)

where E(F]) is a linear functional representing the correction added to F| at
each iteration 7.
Now we are able to prove the following results:

Lemma 4.4.3: Let F be a mapping from D C (2 into (%, satisfying conditions
from (B.1) to (B.7), for some 7 < 2. If u; belongs to the ball Z}(u*) for all i,
where s chosen accordingly to Lemma 4.4.1 then, for some positive constants

Co,Cy,...,Cy,C1, ..., CY, the following inequalities hold:

| Fillez < Co, (4.4.10)

C1 < || Fillezsee < Co, (4.4.11)

Ci <1 Filler—er < s, (4.4.12)

C3 < N(F) s < Cu, (4.4.13)
Cy < |(F) Hlerer < C (4.4.14)

Proof:  Continuity of F yields immediately inequality (4.4.10). In partic-
ular it is not restrictive to assume || F;l[,2 < 1, for all u; € Zj (u*). In fact it
suffices to consider the ¢* normalized function F(u) := & F(u), which verifies
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1F ()l < 1, for all u, € T, (u).
From Lemma 4.4.1, i.e. F is not singular for all u; € Z[. (u*) and from the
continuity of " we deduce inequalities (4.4.11) and (4.4.12).
Finally by using the continuity of the inverse of the Fréchet derivative and
inequality ||(F}) || > 1/||F/||, we obtain inequalities (4.4.13) and (4.4.14). =

Lemma 4.4.4: Under the same hypotheses of Lemma 4.4.3, let E(F]) €
L(T2(u*) C 2, 0%) N L(T] (u*) C 07, 07) satisfy:

1

E(F)lese < 54 4.4.15
1E(Fi)lezsez < 50, ( )
1
E(F)ler—er < 577 4.4.16
IE(F)ller—er < Tk ( )
then the following inequalities hold:
147 leme < 2C, (4.4.17)
1A ler—er < 2C. (4.4.18)

Moreover, denoting by h, := w; — u* the error committed at step i, there exists
e > 0 depending on Il(g*) such that the following inequality holds:

1iller > (| Fille2/ (C2 + ). (4.4.19)
Proof: Using Lemma 4.4.2 yields:

14 Hlese = [(F + E(F)) Hlieoe

I(F + EFE)™ = (F) lese + 1(F) ese
I(F + EF)) esel(F) HlesellE(F) lase
HI(F) ese.

SeS

R

<
<

from which we deduce:

[(FD) ™ le2ser
1= 1E(F) le2se (7)) Hleoe

1A lese <

Using now inequalities (4.4.13) and (4.4.15), we obtain:
1A | eeyee < 20,

Similarly we obtain ||A;!||¢ e < 2C%.
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Now let us set G(u;) = Fl(y) — F'(u*)y;. As G'(v*) = 0 (the zero linear
transformation), then there exists e depending on Z7 (u*) such that

16(;) = G()le> < el — "2, (4.4.20)
for all u; € 77 (u*). By using inequality (4.4.20) we get

1F () = Fw)lle = 17 () — F(w)w +G(w) — Gu)lle

< IF (W) — F(w)ulle + 16 (w) — Gu)lle
< NF @) lesellu; — wlle +ellu; — u|le
which yields, as F(u*) = 0,

| F' (w*) ||z +€ — Co+e¢

Now we are ready to prove the following Theorem concerning the convergence
of the scheme, where we denote by h, := u; — u* the error committed at step
i

Theorem 4.4.1: Let F be a mapping from D C (% into (2, satisfying con-
ditions from (B.1) to (B.7), for some 7 < 2. Assume E(F]) € L(TZ(u*) C
YN L(ZT (u*) ST, 07). There exist a 0, > 0 and constants Dy, Dy, D3 and
Dy such that if ||uy — u*||e- < 6« and if, at each iteration i, we choose ordi-
nately E(F!),F; and N;y1 in order to fulfil the following conditions for some
O0<o<T:

IE(F)le2sex < Dy, (4.4.21)
IE(F)ler—er < D, (4.4.22)
|Fi = Fille < Ds||Fille,  |Fi = Filler < Dsl|Filler,  (4.4.23)

O(Ai,z,(f)nu-nzr) <C(Az,fm [ ||er>
Nit1 > Dymax < N; . : : 24)
12 Dyma { ( 1F e 17 %

where C’_(Ai_,]:"i, 7) and C(A;, F;, 0) are explicitly computable constants depend-
ing on A;, F; and T (respectively on o), then the sequence {u;} converges to u*
in 07 and in 0 (with u; € I] (u*) C Ij (u*)).
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In order to prove Theorem 4.4.1, we need to recall the following Lemma:

Lemma 4.4.5: Let o such that 0 <o <71 < 2. If u; € oy,, then we have

T—0

Ni\
“) lwgller (4.4.25)

N;

1T = Ba) (1 —&%mﬁsa%ﬂmw

where C(A;, F;,0) is an explicitly computable constant depending on A;, F;
and an o.

Proof: First we note that u;, € oy,, that is u; has at most /V; elements
different from zero, implies u;, € (7, for all o > 0. By using (quasi) norm
equivalences on sequences with a finite number of non zero elements, it follows
that [|uller < N7 g -

Moreover, as u; — Ai_lf"i € oy, for some Mii we have that u; — Ai_lfi SN
Finally, applying Theorem 4.2.1 to u; — A; 'F;, we have:

IN

. Gy gz
I(T =P ) (w; = AT Fller < CoNyyy ™ -—AIFHZG

< CoCo(Ai, Fi)N;, ||U ||zfr
_(é T) c T
< O(A;, Fiyo)N Ni e
(4.4.26)
where we used the inequality ||u; — A; ' Filler < Cor(As, Fo) ||t eo- =

Proof of Theorem 4.4.1:

Thanks to assumptions from (B.1) to (B.4), we can use Theorem 4.3.1: re-
calling that r; = F; — F/(A; ' Fi + (I — Pw,,, ) (u; — A7 ' F)), if the following
condition

[(FD ™ riller

T
L <a<l 4.4.927
(E)Flle (4.4.27)

holds for all 7, there exists a 0, such that if ||u, — u*||;- < 0., then {u;} con-
verges to u* in (7 and y; € Z7 (u*) for all 4.
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Analogously thanks to assumptions from (B.5) to (B.7), we can use Theo-
rem 4.3.1: if the following condition
[(FD)"rille

7 " Ja<l 4.4.28
) Flle < (4.4.28)

holds for all 4, there exists a dy such that if ||uy — u*||;2 < d2, then {u;} con-
verges to u* in (% and u; € Zj (u*) for all i.

In particular, if both (4.4.27) and (4.4.28) hold, choosing ¢, = min{d,, d»}, if
the initial guess w, fulfils ||uy, — u*||;- < d., which implies ||lu, — u*||z < 0.,
then {u,;} converges to u* in ¢? and in ¢". As a consequence we also have that
u; € I7 (u*) C I3 (u*) for all i.

Hence, in order to prove convergence in ¢” and in /2, we only need to show
that inequalities (4.4.27) and (4.4.28) are fulfilled, if we choose

At = (F + BE(F)) ' Fi, and Ny

satisfying conditions (4.4.21)-(4.4.24), for suitable choices of the constants
Dl; Dg, D3 and D4.
Let us now remark that the following inequalities hold:

I(FD el 1T = AZFYF) " Flller AT (Fi = F)ller

) Al = IF) Fhe IF) Fle
T A
I = Pa) (s — A2 e
() Fll-
u

and

I(FD) tralle _ (= AT F)((F) " F)lle | AT (Fi = Fi)lle
I(F) " Fille (7))~ Fille o EEle
T W
I = Pry) (w; — A7 F) e
1(F7) 1 Fille

O

We only need to prove that, for suitable choices of the constants Dy, Dy, D5
and Dy, under assumptions (4.4.21)-(4.4.24), each term on the right-hand side
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of the above two inequalities is smaller or equal than 3.

First we recall that the following inequalities hold:

1

1(F) " Filler > Fi”ﬂ”zr, (4.4.29)
|| i”ﬁ%ﬁ"
"o 1
I(F) Fille >z Fille- (4.4.30)
| F ez e2

Let us now consider

_ T = ATFY(FD) T Fi) e
@ e

11— A Filleoe

14, Hlese | E(F) |le—e

IN N

where we used the fact that I — A;'F/ = A1 (A, — F!) = A E(F)).
From assumption (4.4.21), i.e ||E(F))||;2—e < Dy, we have
T < Di||A; 2.

If D, verifies

1
D < —
1_2047

then condition (4.4.21) implies that inequality (4.4.15) is fulfilled and we can
use inequality (4.4.17), which yields

T <2C4D;.

Moreover if D; is chosen to also satisty 2C, D, < ¢, i.e.

1 o

D1 S HliIl{2C4, 6—6'4}’

then N
T< —.
-3

Analogously we have that

(1 = AT FD(F) T F) ller
N@E) e

||I - A;IHHZT—MT

1A ler—ser 1B (F)er e

T =
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If Dy verifies Dy < ﬁ then assumption (4.4.22) implies that inequality

(4.4.16) is satisfied and we can use inequality (4.4.18) obtaining 7 < 2C}Ds.
Moreover if D, is chosen to also satisfy 2C) D,y < 3, Le.

1 o
Dy < min{—— ——
2= mm{wg 60!1}’
then o
< .
T< 3

Now we consider

A E = Rl
I(F) = Fille

o AT lesellFi = Fille

N I(F) = Fille

Using inequalities (4.4.17) and (4.4.30) yields

2C4||Fi — Fille:
1(F) = Fille
2Cy|Fillezse | Fi — Fille:
N 1 Fille '
Now thanks to inequality (4.4.11), i.e. ||F]||;zme2 < C2, we have
2C4Cy|| Fi = Fillee
1 Fille '

From assumption (4.4.23), i.e. || F; — Fillez < Ds]| Fille2, we obtain

W <

W<

W < 204,CsDs.

If Dj is chosen such that 2C,C2D3 < 3, ie.

then N
W < —.
-3

Analogously we have that

A E = R
D

< 1A e e |17 = Filler

N 1(F) =1 Filler

A
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Using inequalities (4.4.18) and (4.4.29) yields

2C|Fi — Filler
A< 4
[(F) L Fille i
20| Filler e || Fi = Filler
- | Filler

Now thanks to inequality (4.4.12) we have

20,CH1 i = Fille
|l

From assumption (4.4.23), i.e. || F; — Fille- < Ds||Filler, we obtain
A < 2C,C)D;.
If Dj is also chosen such that 2C;CyD3 < ¢, i.e.

(67 (67

6C1CY 6C4Cs

A<

D3 < min{ }
then N
< —.
A< 3

2

Now in order to prove convergence in /° and in /7, we only need to estimate

the last two terms: O and U.

By using Theorem 4.2.1, as u; — A; ' F; € £7, we have
I(Z = Py ) (s — AT F) e

3

I(F7) = Fille

Co N |las = AT Fill
N 1(F) = Fille
Using inequalities (4.4.30) and (4.4.11) yields

O =

_2=7 _ —
CoNiy ™ || Fillesellu — A Fille

0= L
CoCo Nt s — A7 il
= 1File
CyC,.C, (4, ]_'—z)N;};TT [ le-
= [File |

_ _ _2=-7
< C2C(Ai7f'iaT)Ni+12T ||Ql||gr
- [[Fille2
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where we used ||u; — Ai_lfiﬂzr < Cr(Ai, F) ||| er-

- - 27
CALT)lugller ) 2-7
fi“(2 '

From assumption (4.4.24), we have in particular N;, > D, (
Hence

_2-r
O < C2D4 2

If D, is chosen such that CoD, e < g, ie

D4 Z (3—C’2>2_T7
Q
then N
O < —.
-3
Finally, by using Lemma 4.4.5, we have
oy e M =P ) (s = AT F)ler
1(FD~ 1ﬂrllw
_ CoCol A PN N e
- 1(FD = Filler
Using inequalities (4.4.29) and (4.4.12) yields

C(Ai, Fi, )N, ™ N [ FLllerser |l

U<
| Filler
_ OO, BN N il
- | Filler
From assumption (4.4.24) we have in particular N; 11 > Dy N; (W) .
Hence _
U<acyD,
If Dy is chosen such that C’QD;%, i.e.
!
D4 Z <3C2> )
a
then o
U< —
-3

Hence, if we choose

s {(12).(12) )
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then we have O < § and U < 3.

Hence we proved that if

(6%
D, < &
1 > 6047
(8]
D, < &
2 —_— 60!17
(8] «
Da < mi
3= m‘“{60402’ 601105}’
302 22—77—7— 305 7'7;0-0'
> )
D4_rnax{<a> ’(a) }’
then 1)
f’ B T e‘r
W) S L AU <
[(FD Filler
and
[(FD)trille

— =2 =" K <
(E) e STV 0=

with a < 1. Thus, by virtue of Theorem 4.3.1, we proved convergence in ¢7

and in /2.

Remark 4.4.2: Let us consider condition (4.4.24):

TO

A T 1 - 2T

C(Ahﬂ’(j)”u.”er).r_g <C(A17f;77)||u||l7>ﬁ
Nii1 > Dymax{ N; —i : U; .
nz b ( 1%iler il |

Convergence in {7 guarantees that ||w,||e- is uniformly bounded; in this way the

choice of Niy1 is essentially driven by N; and m

O

We now prove the claimed result of quadratic convergence of the scheme, under
some slightly stronger assumptions on the choice of E(F]), A; and N;i:

Theorem 4.4.2: Let F be a mapping from D C (% into (2, satisfying con-
ditions from (B.1) to (B.7), for some 7 < 2. Assume E(F]) € L(ZZ(u*) C
2 0%) N L(ZF(u*) C 07, 07). There exist a 6, > 0 and constants Dy, Dy, Dy
and Dy, such that if ||uy — u*||;r < dx and if, at each iteration i, we choose
ordinately E(F!),F; and Ny in order to fulfil the following conditions for
some 0 <o <T:

IE(F) 22 < D] Fillez, (4.4.31)
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IE(F)ler—er < D, (4.4.32)

17 = Fille < Dsl Fillz, 117 = Filler < Dsl|Filler,  (4.4.33)

O(Ai,z,a)||g~||gr>f—”v <0(Al,fl,7 [ ||ﬁ>z -
Ni Z Djmax ]\[Z ( ! ) : 734
1= { [ Filler FaR %

where C'(A;, ]E"Z-, 7) and C(A;, Fi,0) are explicitly computable constants depend-
ing only on A;, F; and on T (respectively on o), then the sequence {u;} con-
verges quadratically to u* in (2:

i llee < |ill72 for alli € N. (4.4.35)

Proof:  Asit is not restrictive to assume || F;|[z < Cy < 1, forall u; € Z7 (u*),
trivially we have ||F||Z < || Fll2. Now it is simple to see that choosing
Dy, Dy, D3 and D, according to the proof of Theorem 4.4.1, yields conver-
gence in (7 and ¢*. By the way we remark that with such choices of the
constants we can use inequalities (4.4.17) and (4.4.18).

If in addition we impose some further conditions on the choice of D¢, D5, D5
and D, we will finally obtain quadratic convergence in (.

Let us now introduce the following notation:

EZ:@l—g* Wlthgl+1:gz_(ﬁ)_lﬁ,;
that is 4@, is the result of the application of a step of the classical Newton
method to u;.

From now on, we choose 0, = min{ds, d,, u}, where p is chosen according to
Lemma 4.4.1. It follows that F, := F'(u;) is not singular for all u; € Z7. (u*).
Moreover, as by hypothesis the operator E(F]) belongs to L(Z§ (u*) C ¢%,(?)
and it is chosen such that ||E(F))|lez_e < 1/||(F)) " e, we also have that
I+ (F))~'E(F)) is not singular for all u; € Z? (u*).

Hence we can apply Lemma 4.4.2 with A* = F] and C = E(F]), obtaining
the following inequality:

I(F +EFE)™ = (F) e
< N(F + EF)) esell(F) " HeselE(F)lee.
(4.4.36)
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hiyy = hy — (F) "Fo+ (F) 'y
= by () (F)MF - FI o (- B~ A7 F)])
= hi— (F)'F+(F) T F AR - (I =Py, ) (w — AR
= h— (F) "R+ AN F-F)+(F) - AHF]

_(I - ]P)Ni+1)(@i - A'_lf'i)a

)

which, taking ¢ norm and using inequality (4.4.36), yields:

lislle < Nl = (F) 7 Fille + 1147 (Fi = Flle + 1(F) ' = A7) Fille
HIU = Pu,p ) — A7 F) e

< Nsalle + 17 ool F — Flle + 1(F)™ = A e | Flle
(I~ B ) (s — A7)
< hisille + 1A s |7 — File
[ssalle + | | 3
Q U
A sl D) M| ECFD e | Fillee
A
I~ P ) (s — A7 FD) e
—

In order to obtain quadratic convergence, we only need to prove that under
assumptions (4.4.31)-(4.4.34), each term on the right-hand side of the above
inequality is smaller or equal than ||h;||%.

First we remark that )
Q = (i lle < S lIRlI7
4

holds thanks to classical results on quadratic convergence of Newton method,
for a starting point sufficiently near to u*.

Consider now

U= A7 esellF — Fille-
Using inequality (4.4.17) yields
U < 2C4||F; — Fillee.
From assumption (4.4.33), i.e. || F; — Flle2 < D3| Fi|%, we have that
U < 204Ds|Fi.
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By using inequality (4.4.19), i.e. ||h;|lez > [|Fille2/(Co + €), we obtain

U < 2CyD3(Cy + £)°|| ;|72

If D; is chosen such that 2C,D3(Cy + €)% < i, i.e.

1
Di< ——
7= 8C4(Cy + €)%

then .
U< Sl

Now let us estimate
A= A e D e lEED e | il

Using inequalities (4.4.17) and (4.4.11) yields

A <2 B(E) | File
From assumption (4.4.31), i.e. [|[E(F))||le—ee < D1||Fil|e2, we obtain

A < 201D, || Fil|,

which yields, by using inequality (4.4.19),

A < 207D (Cy + &) || l7..
If D, is chosen such that 2C7D;(Cy +)? < 1, i.e.

1
D <—
L= 8C2(Cy 4 6)?

then .
A< Il
Finally we consider
D = |[(I = Pyy,)(; — A7 ' F) e
N Nl — A7 Fille
O, B NG e

[N

[N

(4.4.37)

o o
From assumption (4.4.34), we have N;;; > D, <M> “" Hence

52

_2=7
D < D, 7 || Fillee.
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By using inequality (4.4.19), we have

-7
p

D < Dy 7 (Co+ )iy |-

If D, is chosen such that D4_2;:(CQ +¢)? < 1, Le

27

D, > (4(02 +5)2)
then )
LTINS

Hence we proved

|hialle <Q+U+ A+ D < ||hy|7. (4.4.38)

Remark 4.4.3: Given the number of degrees of freedom M, what we actually
obtain is an approzimation u}, to u*, which satisfies, thanks to (4.4.37) and

(4.4.38):
* * 3 2 A T —(l—l) *
lu” = uhgller < 7 llBillez + O (Ai, Fi 1) M7 [y [l

Heuristically this means that we are further, but not so far, thanks to the
above result of convergence, from the natural benchmark provided by non linear

approximation: _
lu* = Pyu'flee < Cr M~ 72 ||uf e

Remark 4.4.4: Conditions (4.4.31)-(4.4.34) are not completely reliable from
a computational point of view, because they imply the knowledge of quantities,
like || F|, | Fi — Fil| or |E(F))|, that we do not want to compute at any steps
of our algorithm. Hence, given u;, we need a strategy for building F; and
A;, which provides estimates for || F||, ||F: — Fill and ||E(F})|| involving only
available quantities such as F; and A;. Results in this direction can be found
in [30].

4.5 Open problems and perspectives

We proposed an extension of the Nonlinear Richardson algorithm to nonlinear
problems. The Richardson scheme has been replaced by an inexact Newton
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scheme, where the ”inexactness” comes both from the approximate applica-
tion of the involved operators (this issue is somehow taken for granted: it is
assumed that there is a procedure which applies these operators up to any
prescribed accuracy) and from the thresholding error coming from the appli-
cation of the nonlinear projector. Under some regularity assumptions on the
nonlinear operators, results similar to the linear case are obtained. What it is
indeed necessary for a deeper understanding of the reliability of the method
are concrete examples of nonlinear problems to be treated by such an approach
and numerical tests.



134 Adaptive schemes for nonlinear equations  Chapter 4




Chapter 5

ADAPTIVITY & WAVELET
PACKETS

"Well, this is the end, Sam Gamgee,” said a voice by his side. And there was
Frodo, pale and worn, and yet himself again; and in his eyes there was peace
now, neither strain of will, nor madness, nor any fear. His burden was taken
away. "Yes,” said Frodo. "But do you remember Gandalf’s words: Even
Gollum may have something yet to do? So let us forgive him! For the Quest
1 achieved, and now all is over. I am glad you are here with me. Here at the
end of all things, Sam.”

(J.R.R. Tolkien, The Return of the King)

5.1 Introduction

In this chapter we introduce two space-frequency adaptive strategies for the
numerical approximation of the solutions of quantum hydrodynamic (QHD)
model for semiconductors, based respectively on wavelets and wavelet pack-
ets. The two strategies have been compared in [18] on a test case, and wavelet
packets perform better in approximating with fewer degrees of freedom the
higher frequency dispersive oscillations of the solution.

Motivated by such a result, we want to provide a way of optimizing wavelet
packets adaptive schemes based on Galerkin discretizations, by extending the
techniques of wavelet compression of certain operators to the case in which
such operators are represented in terms of wavelet packets. The essential
observation is that certain operators have an almost sparse representation in
wavelet coordinates thanks to the good properties of localization both in space
and in frequency of wavelet bases. Thus discarding all entries below a certain
threshold will be then give rise to a sparse matrix that can be further processed
by efficient linear algebra tools.

As wavelet packets provide better properties of localization both in space
and in frequency, the representation of such operators in terms of wavelet

135
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packets should be in principle more sparse than in the wavelet case. Thus a
wavelet-like compression techniques should give rise to a much more sparse
matrix, possibly reducing the computational cost in solving the linear systems
resulting from the Galerkin discretization of the problem.

5.2 Motivation: the QHD Equations

The quantum hydrodynamic model (QHD) for semiconductors has been re-
cently introduced (see e.g. [2], [51], [52]) in order to describe with macroscopic
fluid-type unknowns phenomena, such as negative differential resistance in
a resonant tunneling diode, which are due to quantum effects and cannot
be modeled with classical or semi—classical descriptions. Mathematically, the
QHD system is a dispersive regularization of the so—called hydrodynamic equa-
tions (HD) for semiconductors (a hyperbolic system of conservation laws cou-
pled self-consistently with the Poisson equation). As usual in macroscopic
semiconductor models, the electron position density or some of its derivatives
may present strong variation or even blow up in some points. Moreover, the
dispersive character of the QHD system implies that the solution may de-
velop high frequency oscillations, which are localized in regions not a priori
known. Therefore, numerical simulations of the QHD system with uniform
discretizations require an extremely high number of grid points, also when the
“pathology” of the solution, which enforces the mesh size, is localized in a
small percentage of the simulation domain. This leads to unnecessarily time
consuming computations.

Due to the possible dispersive oscillations, an efficient approximation de-
mands the use of a discretization where not only the spatial grid, but also the
frequency distribution is adaptively adjusted to the behavior of the solution.
One way of achieving such a goal is to use bases with good localization both
in space and frequency. Wavelet type bases, which display such a property,
have already been successfully used in the design of efficient adaptive schemes
in various application fields (see e.g. [16], [12], [11], [28], [50], [58], [67], [63]).
Due to their characteristics, the definition of criteria for driving the adaptive
procedure (refining and coarsening) both in space and in frequency is quite nat-
ural. In particular, wavelet based adaptive algorithms have been introduced in
([18]) for the semiconductor hydrodynamic model, where, after performing a
diffusive regularization, the adaptive strategy is aimed at well approximating
solutions with steep gradients.

Here we recall [18] the feasibility of an adaptive algorithm based on wavelets
and wavelet packets for the QHD model. Wavelet packets have better fre-
quency localization properties and consequently they are superior to wavelets
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in drastically diminishing the required number of degrees of freedom for well
approximating solutions which exhibit high frequency oscillations.

We consider the isothermal, stationary, one dimensional quantum hydro-
dynamic (QHD) equations in the domain (0, 1)

( J = 0,

JE 2 2 5 JE
) (( g) —|—UE> +UEVI—€—UE (\/Uxx> = = (Pe)

-2V = uf—C(2).

Here u® (which we will also at times denote by u(¢)) denotes the electron
density, J° the current density, V' the electrostatic potential. The parameter
e is the scaled Planck constant, the function C(z) represents the (prescribed)
doping profile of the semiconductor device, the parameter A is the scaled Debye
length and 7 is the relaxation time.

As pointed out before, equations (P.) are a dispersive regularization of the
classical isothermal hydrodynamic (HD) equations

;

Jo = 0,
J? J
{ (— + u) +uVy, = ——,
u - T
—NAV = u-C(2),

\

and, in the formal limit, the QHD equations tend to the HD equations. How-
ever, due to the dispersive term and the non-linearity, if the HD system exhibits
a shock discontinuity, the solution of the QHD system is expected to develop
dispersive oscillations, which are not damped as € goes to zero. In that case
only a weak convergence can hold as € goes to zero and the limiting system is
not expected to be the HD system. In [75] a numerical study shows evidence
of this fact. A complete theory on the small dispersion limit for the QHD
system is still an open problem. We refer to [53], [54], [57] for partial answers
in special cases.

Figures 1-3 present the solution of (P.) for different values of ¢ (¢ = 0.01,
e = 0.005 and € = 0.0026, resp.). The pictures clearly show that the oscillation
amplitude and location does not change as ¢ decreases. Changes in ¢ affect
only the oscillation frequency, which is about the double when ¢ is halved.

An efficient numerical scheme to solve problem (P.) when dispersive oscil-
lations occur is a challenging issue. The oscillations must be well resolved in



138 Adaptivity & Wavelet Packets Chapter 5

Electron density
T T

0.9

0.7

0.6

0.5

0.4

0.3 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 1. Solution of (P;) for e = .01 (A =0.1, 7 = 1/8 and V) = 6.5, with doping
profile C' as in figure 6).
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Figure 2. Solution of (P:) for ¢ = .005 (A = 0.1, 7 = 1/8 and V = 6.5, with
doping profile C' as in figure 6).
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Figure 3. Solution of (P.) for ¢ = .0026 (A = 0.1, 7 = 1/8 and V{ = 6.5, with
doping profile C' as in figure 6).
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order to keep the correct limiting behavior (for ¢ — 0) and it is clear that a
discretization on a uniform grid requires too many degrees of freedom.

We point out that due to the presence of the dispersive regularization, no
special treatment is required to approximate the convection terms in (F). On
the contrary, the use of upwind—type schemes would introduce spurious numer-
ical damping of the oscillations and, consequently, further strong restriction
on the mesh size in order to describe correctly the oscillations. We refer to
[75] for a discussion on this issue.

5.3 Adaptive Solution of QHD Equations

Problem (F;) is highly non-linear, due to the non—linear terms in the second
equation of (P.) and to the strong coupling to the Poisson equation. A contin-
uation procedure in the parameter ¢ is an efficient strategy to deal with such
problems and it can be coupled, for instance, to a (possibly damped) Newton
algorithm for solving the non-linear system for a given ¢ of the continuation
procedure. More precisely, for solving problem (P.), with a prescribed &, we
define a finite decreasing sequence {e,,n =0,..., N} with g ~ 1 and ey = &,
and we solve the sequence of problems (P. ). For the solution of problem
(P.,..), the knowledge of the solution of (P;,) is exploited in several ways for
enhancing the efficiency of the algorithm, for instance it can be used as an
initial guess for the Newton scheme. This procedure has been used in [75]
for solving (P.), there discretized with a finite difference scheme on a uniform
grid.

Here, we are interested in designing and testing some strategies for taking
advantage of the knowledge of the computed solution of (P ) for reducing
the number of degrees of freedom to be used for numerically solving problem
(P.,.,). We aim at an algorithm of the following form.

En+1

n

e Choose a class B whose elements B are the L?-orthonormal bases of finite
dimensional subspaces Vg of L?:

B ={B: B finite orthonormal basis of Vp =< B >**"C L*}. (5.3.1)

We assume that the basis functions considered are sufficiently smooth.

e Compute an approximation g to the solution u(ey) of equations (P.) for
€ = €p using a coarse uniform grid. This is possible since for ¢ ~ 1 the
solution of (P:) is smooth.

e Given the approximation u, to the solution u(s,) of (P.,), an approxi-

mation u,1 to the solution u(en41) of (F., ) is obtained as follows:
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— By analyzing u,, select a basis B, 11 € B, as small as possible, well
suited for approximating u(e,11).

— Compute up41 in Vyp1 =< Bpyp > approximate solution of
(P.,..), by a suitable numerical method (for instance, Galerkin ap-

proximation of (P.,,)).

Due to the onset of high frequency oscillations in a possible large (though
localized) portion of the domain, in order to be able to approximate the so-
lutions of (P.) with few degrees of freedom, it is not enough to work with
methods that are adaptive only with respect to the space. We will then rather
work with basis functions which display good localization properties also in
the frequency domain. In particular we will consider bases B whose elements
will be phase atoms. Phase atoms ([84]) are smooth functions which are well
localized in both position and momentum in the sense of quantum mechanics.
More precisely, a phase atom v needs to satisfy the following properties.

e Finite Energy. Possibly after a re-normalization, it holds
[¥]lz2 = 1.

e Smoothness and decay. Both ¢ and 1@ are smooth (1/3 being the Fourier
transform of ).

e Finite position and momentum.

Ty 1= /x|w(:c)|2 dr < 00,
b= [ DOF ds <,

are respectively called position and momentum (or frequency) of 1.

e Localization in position and momentum. We have

Av = ( - xo>2|w<x>|2dx) Y

Af = ( [~ fo)2|1l3(€)|2d€> s

Ax and A¢ are also called position and momentum uncertainty respec-
tively.

In the following two sections we will consider two classes of phase atoms,
namely wavelets and wavelet packets. In particular we will analyze the perfor-
mances of such two classes in the framework of adaptive approximation of the
solution of (Fx).
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5.4 Wavelets

The first possibility that we consider is the one of wavelet adaptivity. Since
the notation that we will use in this chapter differs slightly from the notation
used up to now, let us fix it. In the literature it is possible to find a large
number of orthonormal wavelet bases for L:

L? =<, j €L k=1, 20 >5m
Such bases consist of functions with the following localization properties:
e The position of ¢ is zj, = k/27.
e The momentum of 1), is & = @2’ (« # 0 independent of j and k).
e The localization in position of ;5 is Az ~ 277,
e The localization in frequency (or momentum) of ¢y, is A& ~ 27

We remark that, by the Heisenberg uncertainty principle it is not possible to
localize a function arbitrarily well both in position and momentum (Az- A& >
1). Therefore the functions v, are localized in the phase space nearly as well
as possible.

The construction of such bases is originally performed on R, but it can
be carried out also on the interval ([33]) with boundary conditions of different
type (homogeneous Dirichlet, periodic, ...). However in this paper we will not
explicitly deal with the issue of boundary condition, since the phenomenology
we are interested in is in general concentrated far from the boundaries.

Remark 5.4.1: Though for simplicity we consider here only orthonormal wavelet
bases, the strategy that we are going to present could be applied, without major
modifications, in the more general framework of biorthogonal wavelets. [32]

We recall that the above localization properties imply that a norm equiv-
alence of the form

1/2
1flar ~ (Z 27T < f g > |2>

j7k

holds for all f € H", r € (—R, R), with the parameter R > 0 depending on the
particular wavelet basis under consideration. For f € H™", r > 0 the notation
< -+,+ > is to be intended as the duality relation between H ™" and H".

In the following it will be useful to represent each basis function ), with
the rectangle |k277, (k + 1)277[x]27,2/"! in the (z,&) plane. Using such a
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Frequency

Space

Figure 4. “tiling” of the phase-space corresponding to a wavelet basis
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representation yields a “tiling” of the phase space which well represents the
localization features of such bases.

When considering adaptive wavelet methods the class of bases B takes the
form

B={B={¢j (j,k) €A}, A finite subset of Z* x Z}.

A simple, yet effective, adaptive strategy based on wavelet bases is the
following [67], [12], [18]. Let u(e,) be given:

u(en) = Z u i
Gk

We can construct a basis B, 1 € B for approximating u(e,1) by simply look-
ing at the size of the coefficients uj,. If a coefficient is big, the corresponding
function is included in the basis By, ,1, as well as some “neighboring” (in the
phase-space) functions. If, on the other hand, a coefficient is very small, the
corresponding function will not belong to the basis B, ;.

More precisely, we define B, as follows. We choose two tolerances ¢, and
04, as well as a number N,4q of “relevant neighbors”, and we set

By = {vp: 2] > 6.}, (5.4.1)
Moreover, we set
144 = {(j, k) = 227uly] > 0.}, (5.4.2)
Nip = {(j +¢.2%k+n),(=0,1, n=—Naga-* , Naaa}, (5.4.3)
By, = U {jk, (4, k) € Nji}. (5.4.4)
(G k)i

The basis B,,;; is then defined as

We stress out that the above refining and de-refining strategy is tuned in order
to give a good approximation in H? rather than in L2. This is reflected by
the presence of factor 227 in equations (5.4.1) and (5.4.2). The choice [18] of
such a norm is heuristically motivated by the fact that we are dealing with a
third order operator.

5.5 Wavelet Packets

A “Wavelet Packet dictionary” D is a overly redundant (non linearly indepen-
dent) set of functions, which, by abuse of notation we will call “basis func-
tions”. Each basis function w,, s in the set is identified by three parameters:
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the (scaled) position p, the (scaled) wave number w and the scale s. Each
of these functions is constructed in such a way that its space-localization is
Ax ~ 27% with center p/2® and its frequency-localization is A& ~ 2° with cen-
ter w2®. Again, in view of the Heisenberg uncertainty principle, the functions
wp s are localized in the phase space nearly as well as possible.

For a given f € L? one can define the wavelet packet transform of f:

o) = [ St

Out of a given “Wavelet Packet dictionary” it is possible to extract many
different orthonormal bases for L? of the form By = {w,s, (p,w,s) € A}, by
selecting suitable subsets A of the index set {(p,w, s)}. For such subsets the
inversion formula holds for any f € L?:

f = Z d ,w,s(f)wp,w,s-

(pyw,s)EA

In particular, for the choice A = {(p,1,s), p € Z,s € Z*} one obtains the
usual wavelet orthonormal basis described in the previous section.

The “basis functions” w,, s can be constructed as follows. We start by
choosing two quadrature mirror filters, two finite sequences {h,} and {g,},
satisfying the following relations:

1 _
> ho = hopsr = 7 =D "hin  VneZ, (55.1)

1, ifm=0
hnhn m — n9Yn+2m — ’ , 5.5.2
zn: 2 zn:g vz {0, otherwise, ( )
> hngn+2m=0,  VmeL (5.5.3)

We can then define a family of functions, depending on an integer parameter
¢ >0 by

Wa(z) = V2> haWe(2z — n), (5.5.4)

Waer () = V2> g We(2x — ). (5.5.5)

We remark that Wy satisfies a dilation equation. Conditions (5.5.1 — 5.5.3)
guarantee the existence of a compactly supported solution of such a dilation
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equation (and therefore they imply the well posedness of definition (5.5.4)). W,
and Wy are, respectively, the scaling and wavelet functions of the corresponding
wavelet basis. The pair {h,} and {g,} can be chosen in such a way that the
functions W, have any prescribed smoothness.

Lemma 5.5.1: Let {h,} and {g,} be two families of QMF's satisfying condi-
tions (5.5.1 — 5.5.3). Let {Wy}, the family of wavelet packets associated with
the filters {h,} and {g,}. Then there is a K < oo, such that supp(W,) C
[—K, K], for all ¢ > 1.

For p € Z,w € Z",s € Z™", wavelet packets are then defined by
Wpos = 2P W,y(2°z — p), (5.5.6)

where w is the (integer) scaled wave number.

Orthonormal sets can be extracted out of the wavelet packet dictionary
by selecting index subsets A for which the dyadic intervals {[w2?, (w + 1)2°[:
(p,w, s) € A} form a disjoint cover of the positive semi-axis.

More precisely, we will say that an index set A is admissible if the following
condition is satisfied: for = defined by

= {(w,s): 3, (p,w,s) € A},

it holds for each (w, s), (W', s') € =

(11

(w,s) # (W', 5") = [w2°, (w+1)2°[NwW'2%, (W' + 1)2°[= 0.

It is possible to prove that if the index set A is admissible, then B, =
{wpw.s, (p,w,s) € A} forms an orthogonal system.
We say that an admissible index set A,

A= {(p7w78)7 (w75) € E) pE ](w,s)}a

is complete at scale S on the domain T if = satisfies

U w2, (w+1)2°[= 0,27, (5.5.7)
(w,s)EE
and if, for all (w,s) € Z, the set I\, o) = {p: (p,w,s) € A} satisfies
U k2. p+127] 2T (5.5.8)
pe[(w,s)

Roughly speaking, a complete index set identifies the orthonormal basis of
a discrete subspace of L?(T) corresponding to a uniform discretization with
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mesh size 27°. Condition (5.5.7) assures that all the frequencies below 2° are
covered, and condition (5.5.8) guarantees that, for all frequency ranges, all the
spatial positions are present.

We can then define a class B of bases as follows:

B={By CD,A€cL} By :={w, s, (p,w,s) € A}, (5.5.9)

with
L={A :Ais admissible and #(A) < 4o00}.
Again, it is useful to visualize the phase-space localization property of each

basis function by means of a “tiling” (obtained by representing w,,, s by the
rectangle |p27°, (p + 1)27%[x|2%w, 2% (w + 1)|.

Frequency

Fre

Space Space

Figure 5. “tilings” corresponding to different wavelet packets orthonormal bases

The redundancy of the wavelet packet dictionary allows for a greater flex-
ibility as far as space frequency localization is concerned. On the other hand,
the computation of a good approximation of a function by means of few degrees
of freedom needs for a more sophisticated approach.

Let us at first consider the problem of approximating a known function
f with as few as possible degrees of freedom. The extraction of a basis well
suited for approximating the given function f with few degrees of freedom
needs now to be performed in two steps:

(i) Select a complete (at scale S if the function is sampled with sampling rate
27%) index set A € L.
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(i) Select a subset Ay C A such that

1S = Z Wy sWp sl a2 1s small.

(pw,s)els
Task (ii) can be performed quite easily thanks to the observation that for
all functions f € H*? and for any orthonormal basis B; € B it holds

1/2
2

[ £l zar2 ~ Z |(2sw)3/2wp,w,s

(p,w,s)EA

As far as task (i) is concerned, the optimal choice is provided by an index set
A such that the corresponding basis B; minimizes a suitable additive entropy:

The basis Bj is usually referred to as best basis for the function f. If the goal
is, as in our case, to approximate f with as few as possible degrees of freedom,
then the entropy can be for instance chosen of the following form

H(f,By) = #({(p,w,s) € A: |(2°w)¥ 2wy | > 0}). (5.5.10)
Once Bj has been selected, the subset Ag is clearly defined as

As={(p,w,s) € A: |(2°w)*?w, ., > 0} (5.5.11)

The implementation of the wavelet packet transform and of the best basis
search algorithm for a given function f is described in detail in [35]. If f is
sampled with step h, the entire procedure has complexity %log %

5.6 Wavelets vs Wavelet Packets

In [18] the effectiveness of wavelet and wavelet packets adaptive scheme has
been compared. We report here the results of the tests.

Let us start with the the following test on the effectiveness of wavelet
methods. Let (¢,)n—0,... n be given.

e Compute a reference solution u(e,), (n =0,---, N), by solving (FP.) for
e = £, with a finite difference scheme on a very fine grid (“overkill”). In
our case we used a discretization step 2.5 1074,

e Foreachn =0,---, N — 1, perform the following procedure:
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Step 1. given 1, (computed at the previous step)
k€A

(@, approximation of u(e,)), define B, = {Yjk, (J, k) € Aps1}
and the corresponding space V11 =< B, 11 >*7*" by the preceding
adaptive strategy (5.4.1)—(5.4.5).

Step 2. define 4, as the L? orthogonal projection of u (g, 1) onto V41

T,Vl,n_|_1 = Z < u(gn—l—l)a w]k > d)]k
(J:k)EAR+1

e Foralln=1,---, N evaluate the relative error

_ |u(en) — tnl| o2
n =
|w(en)l o

The above test has been performed for the following data in (P.): the
doping profile C'(x) is chosen as in figure 6, with max(C)=1 and min(C)=0.1,
the Debye length is A = 0.1, the relaxation time is 7 = 1/8 and the applied
voltage is V) = 6.5. The solutions for these values of the parameters are the
ones depicted in pictures 1-3.

Doping Profile
T T T

0.6 4

0.4 b

0.2 4

I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6. Doping profile C(x)

In the following table we give [18] for each n, the value g,, the relative
error e, the cardinality Nyqqp of the adaptively selected basis B,,, as well as
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the “compression ratio” (CR) Nugapt/Nunis (Nunis (~ 27 for some j) being the
number of degrees of freedom which would be necessary to represent u(ey)
with a uniform discretization with the same accuracy).

En €n Nadapt CR
0075 || .1535 120 | 4.27
.007 0218 156 | 3.28
.006 0377 160 | 3.20
.005 .0202 175 | 2.93
.004 .0208 195 | 5.25
0025 || .0230 256 | 4.00
.002 0137 353 | 5.70
.0016 0111 446 | 4.51
.0011 || .0123 296 | 6.71
.00102 || .0020 858 | 4.66
.001 .0014 969 | 4.13

Table 5.6.1. Wavelet Adaptive Strategy

If one wants to use wavelet packet dictionaries and the concept of best
basis in the framework of the adaptive type algorithm described in section
5.3, for each e, one must be able to perform tasks (i) and (ii), for u(e,+1)
by analyzing the solution u(e,) at the previous continuation step. We will
not deal here with the problem relative to task (ii), the extraction out of
the best basis of a small subset well suited to well approximate u(e,41). We
refer to [63], where a possible strategy has been proposed, based on a suitable
definition of “neighbors” (in the phase space) of a given basis function w, .
We will rather concentrate here on the problem of selecting the best basis -
or a close enough basis - for u(e, 1), by analyzing the solution u(s,) at the
previous continuation step.

In order to verify to what extent this is feasible, the following test has been
performed

e Compute u(e,) (n=0,...,N) by solving the QHD equations for ¢ = ¢,
by finite differences on a very fine grid (“overkill”). In our case we used
a discretization step 2.5 10™* (which corresponds to a scale S ~ 12)

e Compute the wavelet packet transform wy , . of u(e,)

w;,w,s:/u(gn)wp,%&
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and select the best basis B" = {wpws: (D, w,s) € A}

H(u(e,), B") = min H(u(e,), By).

By

e Compute the number of coefficients needed for approximating (e, 1)
using elements of the best basis for u(e,):

H(u(ens1), B") = #({(p,w,5) € A" |(2°0)*? wpbl| > 6}),

p7w7s

and compare H(u(g,11), B"™)) with the optimal number of coefficients
H(u(zns1), B™))

e Define an approximation to u(g,41), by selecting an index set [\g

A2 = {(p,w,s) € A" |(w2®) 3w

p’w’s

> 6}

and computing

= _ E n+1
Upy1 = wp,w,swp,u],s'

(pyw,s)EAR
e Evaluate the relative error

it _ [u(Ent1) = Tnga |l o
o IICHEN PEE

e

The following table [18] summarizes the results of such test, performed in
the same case as in the previous section. We report the values of €,,,1, of the
number N, of significant degrees of freedom when approximating u(e,11) by
means of the best basis EX“, the number N,y when approximating u(e,.1) by
means of the best basis B? obtained from the analysis of u(e,) and the error
e%l. The table also displays the two compression ratios C'Rop = Nynir/Nopt
and C'Rest = Nunif/Nest (Nunis is defined, as in the previous section, as the
number of degrees of freedom which would be necessary to represent the solu-
tion with the same accuracy by means of a uniform discretization of wavelet
type).

If we analyse the results of the previous tests we realise that wavelet adap-
tivity for the numerical solution of QHD system is not entirely satisfactory.
This is mainly due to the fact that wavelet bases approximate high frequencies
with basis functions which are highly localized in space. In other words, when
approximating an highly oscillating function, the use of wavelets correspond to
using (in the region where oscillations occur) an uniform discretization. By a
comparison it is clear that, especially at very high frequencies, wavelet packets
perform better, allowing to almost double the compression ratio.
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€n Nopt Nest CRopt CRest GZP

.0075 95| 116 2.3 4.4 | .0080
.007 102 | 105 2.0 4.8 | .0074
.006 112 | 122 4.6 4.2 1 .0067
.005 124 | 137 4.1 3.7 | .0080
.004 150 | 163 6.8 6.3 | .0045
.0025 192 | 168 6.1 5.3 | .0028
.002 253 | 292 8.0 6.9 | .0023
.0016 331 | 366 6.0 5.5 | .0024
.0011 480 | 585 8.3 6.8 | .0012
00102 || 525 | 550 7.6 7.3 | .0010
.001 496 | 503 8.1 8.0 | .0011

Table 5.6.2. Performance of an adaptive WP algorithm
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5.7 Wavelet Packet adaptive methods & Compression techniques

Wavelet packets, due to their better frequency localization property, are then
superior to wavelets in drastically diminishing the required number of degrees
of freedom for well approximating the solution. Clearly they are more costly
when used to solve problem (P.), due to the higher cost of the WP transform
with respect to the FWT, and to the additional cost of the best basis search.

The intrinsic difficulties connected with the application of wavelets in the
framework of non-linear problems [44], [30] are even harder when dealing with
Wavelet Packets. On the other hand the computation of the wavelet packet
coefficients of a given function obtained by applying a nonlinear functional to
a wavelet packet lacunary sum, often requires the computation of the corre-
sponding scaling coefficients at the finest scale, hence making the realization of
a fully adaptive wavelet packet scheme unfeasible from a computational point
of view.

However, the strong non-linearity of the problem requires a continuation
algorithm in the parameter ¢ and for each ¢, of the e-sequence a non—linear
system must be solved (for instance with a Newton algorithm). It is then
clear that, when (P.) is solved for a small ¢, a linearized QHD system must
be solved many times and the much lower number of degrees of freedom se-
lected with the wavelet packet procedure is expected to largely compensate
the higher cost of the basis selection and of the non-linearity treatment and
to provide an over all more efficient numerical scheme.

1. Compute an approximation ug to the solution u(ep) of equations (P.) for
€ = gy using a coarse uniform grid. This is possible since for € ~ 1 the
solution of (P.) is smooth.

2. Given the approximation u, to the solution u(e,) of (P.,), an approxi-

mation u,1 to the solution u(en41) of (F-, ) is obtained as follows:

e By analyzing u,, select a wavelet packets basis B, 1, well suited for
approximating u(g,41).

e Compute uyq1 in Vi1 =< B,y >°P%" approximate solution of
(P.,..), by a suitable numerical method (for instance, Galerkin ap-

proximation of (P, ,)).

When we deal with the computation of u, ., in V,,41; =< B, .1 >%*" approxi-
mate solution of (P, ,,), by, for instance, Galerkin approximation, we need to

solve infinite linear systems of the type

Run+1 =9,
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where u,,; has only N nonzeros elements (we say u,.; € Xy), due to the
particular choice of the basis B, and R = (ryy), withryy = fwAwg\’,t),

A = (p,w, s), for some f > 0 and w)y, wy belonging to B, ;.

Since, as we will see in the next section, the entries of the matrices R in-
volved in the wavelet packet discretization of the operators have good decay
properties, we can apply such operators to sparse vectors in a quite effective
way, i.e. we can exploit the sparsity of the stiffness matrix R and of the vector
Unp41 in such a way to perform, with a low computational cost, an approxima-
tion of the matrix-vector product R, ;.

Non the less one can still hope to take advantage of the sparsity of the
solution of the QHD equation within the framework of a solution in the full
space!

5.7.1 First compression

In the wavelet context it is well known [20], [41] that a large class of opera-
tors have an almost sparse representation in wavelet coordinates thanks to the
good properties of localization both in space and in frequency of wavelet bases.
Thus discarding all entries below a certain threshohld will then give rise to a
sparse matrix that can be further processed by efficient linear algebra tools.
Motivated by such a result, as wavelet packets provide better properties of lo-
calization both in space and in frequency, the representation of such operators
in terms of wavelet packets should be in principle sparser than in the wavelet
case. Thus applying wavelet-like compression techniques [41], [28], [27] in such
a wavelet packets framework, should give rise to much sparser matrices, hence
reducing the computational cost in solving the linear systems resulting from
the Galerkin wavelet packets discretization of the problem.
To do that we need to estimate objects of the type

[ wraslaulf  (wdal,

where w](j L, o is the f—th derivative of wy . . It is not restrictive to sup-
pose s > s’ otherwise we will integrate by parts f-times. Let us denote by
i(Wpw,s, Wy s) the function whose value is one if the supports of w,, s and

Wy ¢ are disjoint, zero otherwise, then the following estimate holds:

Theorem 5.7.1: Let {W,,}°2, be a family of wavelet packets, then it holds

‘/wp,w,s(x)wz(,&,,s,(x)dx < 2(5+5’)/22—t(5—8’)+5’f—5+[10g2w’](f“)i(wp,w,s,wpf,wf,sf).
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In order to prove Theorem 5.7.1 we need the following result [60]:

Lemma 5.7.1: For every function W, it is possible to find a function g(z)
such that g (x) = W, (z), with ||gllee < C, where t equals the number of null
momenta of W,, and g has the same support as W.,,.

Proof: Using the above Lemma and integrating by parts yield:

|T)\7/\/| = ‘/wp,w,s(l‘)wl(),l],’s/(x)dﬂ?

ols+s')/2

IN

/ [27g(2x — )| O[Wo (2 — )| Dl

9(s+s)/2

[N

/QStg(st - p) [Ww,(Qs’x . p/)](f+t)dx

< 2(s+s’)/227st25’(f+t)

[ o@a - Wi eds - s
< 2(s+s,)/22_5t25,(f+t)||Ww’||Wf+t,°°i(wp,w,sawp',w’,s’) / |g(2sx _p)|dx

By using Bernstein-type inequality
Wl o0 < 288 HO W, o,
where [z] denotes the smaller integer larger or equal than x, we have
[ra] < 202t o 0wy oy )9 (@) o2 |SUPP (W)

Finally, by using Lemma 5.5.1 which yields |[supp(WV,)| < K for all w, one
obtains:

|7"/\,X| < 02(8—1—5’)/22—t(s—s’)+slf_s+[log2 w,](f—'_t)Ki(wp,w,s; wp,,w,,s,)
Now we are ready to apply our first compression to the matrix R.

Definition  Let us fir J > 0. We apply first truncation defining RJ =
(Fax)an as follows

P v, if AN € L(J)N Ty
AN 0, otherwise

where Iy(J) = I (J = 1) UIP(J — 1), with

I/gl)(‘] — 1) ={N: i(wy,wy) # 0,5 > s, 20 < o=y
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I)(\2)(J — 1) ={N: i(wy,wy) £0,8 > 5,200 < 9Dy,
while functions l; : N> — R are defined as follows
L((s,w)):=(s+5)/2—|s=§|(t—1)+5f — s+ [logyw'|(f + 1)

and
L((s,W)) = (s+5)/2—|s—=§|t+sf — s + [logyw](f +1).

Theorem 5.7.2: Let Ay C A be a fized subset of A of cardinality #Anx < N,
then the following estimate holds

IR — Rylleay) e < SMEKN27. (5.7.1)

Proof: In order to prove the Theorem we use Schur Lemma and we reduce

to estimate
E [ — Tan |-
NeAn

Using the definition of 7 y yields

Z [T — x| < Z [SWYF

NEAN AIGAN\I/\

Hence, by using Theorem 5.7.1, it follows

> Il

)\,EAN\I)\

< D> Imwlt DD I
Nis>s' Nis<s!
NeAy\IM NeAy\1?

[N

Z C(s5+5')/29~t(s—5')+s' f—s+|log, ‘”'](f”)Ki(wp,w,s, Wy o st) +
(v w'5)EANTL)

Z O2(s+5")/29—U(s' —5)+sf—5'+[logy w](f+t) Ki(wpy.5, Wy o1 57)
(0 '8V AN
_ Z (548" /29—t]s—s'|+5' f—s-+{log, “"](f”)Ki(wp,w,s, Wy 1 s) +
(0" ' ") EAN T

Z O+ 29~ tls" sl —"Hloa U0 Feiay, o ).
(0 5 )EAN L

Using the fact that the set {p’ : i(wy v ¢, Wpws) # 0} has cardinality not
greater than 3M max(1, 25_5'), where M depends on the length of the support



Section 5.7. Wavelet Packet adaptive methods & Compression techniques 157

of W,, yields
Z |7")\7>\I — 7z)\7)\/|
)\IEAN
S 3MEK max(1,27) 020+ 2t 1 msllonw )14
(w’,s’)EAN\Igl)
S 3MEK max(1, 27 ) 020/ 2t~k s~ g (/)
(w’,s’)EAN\I/(\2)
= Z IMEKC26+s)/29—(t=1)ls—s'|+s'f—s+log, '](f+1)
(w’,s’)EAN\If\l)
Z IM IO +8)/29—tls" —s|+sf—s'+logs w](f+1)
(w’,s’)EAN\If\2)
< 3MK( Z 251((01':5’)) + Z 2[2((w’,s’)))

(w5 )eAN TV (s ) EAN T

IN

Hence, by using the definitions of I)(\l) and I/g?), it follows
Z |T)\7/\/ — 7:/\,)\/| S 3MKN2_J
NeAn
In complete analogy one proves an analogous estimate for the rows sums

Z [ran — Fa| < Z Iran| <3MKN277,

AEA N AEAN\IA/

Remark 5.7.1: We obtained that
IR — Rylleay) e < SMKN2™

and so_for each upy1 € Ay we are able to estimate the error we commit by
using Ry instead of R:

I(R = R)unsalle < IR = Rillewyselunlle < 3MEN2™ [lug e

This is a pessimistic estimate and quite rough if we compare it with the one that
can be achieved in wavelet context, but this huge difference can be compensated
by the fact that wavelet packets perform better than wavelet in approrimating
with fewer degrees of freedom the high frequency dispersive oscillations of the
solution of our particular problem.
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5.7.2 Second compression

By exploiting good properties of localization even in frequency of wavelet pack-

ets, we can further compress the matrix R, obtaining a second matrix R, such
that

IR — Rylle2(an) e

remains little.
From equation (5.5.4) it follows that
Wao(€) = me, (€/2)me, (€/4) . me, (€/27)Wo(€/2), (5.7.2)
where &; € {0,1}, mo(€) = 32, hne™, mi(€) = e~ ®mo(€ + 7) and
[mo (&) + [mo(& +m)* = 1. (5.7.3)

From (5.7.3) and from the fact that mg(§) and m4 (&) approximate better and
better respectively the ideal low pass filter and the ideal high pass filter as the
lengths of the filter increase, it is not difficult to prove the following:

Lemma 5.7.2: For every 0 < a < 1 it exists a couple of quadrature mirror
filters of lengths depending on « such that for every & it holds:

Imo(§)ma ()] < a. (5.7.4)
Proof: =~ We show only that if [mg(§)mi(§)] < «, then o < 1. In fact if

a =1, it would follow [mg(€)| = |m1(€)| = 1, for some &, which, used together
with (5.7.3), would give |m(§)| = 0. Absurd. n

Now we are interested in estimating objects of the type:

| [ e

Lemma 5.7.3: The following estimate holds

|/W (€)dE| < Caew,

where o < 1, Y, = f::1 |wy, — wl| and C' depends only on Ws.

Proof: From Plancherel’s theorem it follows that

/mwmwmzwm/M@Mm%
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Let us suppose j > j'. Recalling (5.7.2) yields

[ e
= | [ e (6/2ml/0) e (€12 Wl 2)
mey (§/2)mey (6/4) ... mar (6/27)Wo(€/27)de|
= | [ ma/2ma€/2) e (€12 Y (627
me, (6/27h) L ome (€)2)Wo(£/2)Wo(€/27 ) dg|.

Now, by using Lemma 5.7.2, one obtains

JAEGIAGTE

< /Imq(f/?)msg(f/Q)l---|mej,(€/2j')ms;,(€/2j')|
e, (€727 e (€/2)|IWo (6/27) W (€/27) g

S Ca"/ww ,

where oo < 1, v, = i::1 e, — €' | and C depends only on Wj. n

Let A = (p,w,s). Suppose for the moment s’ > 5. As we want to improve
the compression of matrix Ry, we are interested in estimating in particular
objects of the type

[ nslerilf (o).

Lemma 5.7.4: The following estimate holds

‘ / Wpos (@)W, | (@)da| < 27PRUZYDS=) (0m) =10 Cray,  (5.7.5)

where Cy,Cy depend only on wy and its Sobolev reqularity. o <1 and 7, =

!
51:1 |, — MH
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Proof: In complete analogy with the proof of Lemma 5.7.3, one obtains

‘/wpws p w’ s’(x)dx

s+s )/2
2m

s')/2
< o [l s ter2 el

< A ) €l g (62 g (6224 . (6274 a2+
(€2 ) mey(€/2°79) ey (€2 WolE/2°M) .

/ <|§1> ¢ W (€/2 ) BT (6/2°) de

Using Lemma 5.7.2 yields

[ @ e

where o < 1, 7, = i::l len, — €1,|, while Cy, Cy depend only on Wy and its
Sobolev regularity. "

< 9 V201289 (20) 10y Cpan

Now we apply to R, a second compression defined as follows
Definition Let us define }:%J = (1;,\,X)>\7,\/ where
P, if N e A(J)NAy
0, otheruise
where Ay(J) = AV (T = 1) UAP (J = 1), with
Ag\l)(J —1)={N:s<¥, 9~ 12QU=1/2)s =) o > 277},
Ag?)(J — 1) ={XN: s>, 2bT2QY2=) g 5 977

Theorem 5.7.3: Let Ay C A be a fized subset of A of cardinality #Anx < N,
then the following estimate holds

||R] - RJ“[Z(AN)_)eQ 5 N2, (576)

Proof:  In order to prove the Theorem we use Schur’s Lemma. Hence we
reduce to estimate Z)\’EAN |Fan — Tax|- By means of the definition of the set
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A, we obtain

Z |’I:)\,)\/ — ’IE)\,)\/|

NeEAN

< E [P |
Ne(ANNIN)\Ax
< ) [P |+ ) [Pl
Nis<s' Nis>s' _
Ne(AnnI)\ALY Ne(AnnI)\AY

Now we proceed as in the proof of Theorem 5.7.2. Using Lemma 5.7.4 and the
fact that the set {p' : i((wy o s, Wpws) # 0} has cardinality not greater than
3M max(1,2°~*"), where M depends on the length of the support of W,,, yields

Z [T — 7§A,>\’|

NEAN
< Z (2m) 713 M K max(1, 2572 2CUY25 =) (o) 1O CraM Y +
(w5 )e(AnNI)\ALY
> (2m) " 13M K max(1, 22 /2CU 25— (o) L0y O o

(w',s")€(AnNI)\AY

= 3MK (27)'C,C; Z (2m) 12 12U =128 =) g

(w’,s’)E(ANﬂI/\)\Ag\l)

Z 2|s_s’|2_1/2(2(f—1/2)s—s’)(QW)—ICY’YA,A’
(w’,s’)E(ANﬁIA)\Ag\Z)
< (3MK(2m)~'C,C;) N2~

In complete analogy one proves an analogous estimate for the row sums. "

5.8 Open problems and perspectives

The use of the adaptive treatment of a nonlinear PDE (describing the electron
density in a quantum hydrodynamic model for semi-conductors) by wavelet
packets discretization is motivated by the locally oscillating patterns of the
solution which can be better compressed by a few wavelet packets than by
wavelets or adaptive finite elements. This property is illustrated by some nu-
merical examples. Even if in this Chapter we focus mainly on the issue of the
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sparsity of the matrix resulting from the wavelet discretization of differential
operators, there are however several new problems which are raised by the
use of wavelet packets for the adaptive discretization: appropriate quadrature
rules, treatment of the nonlinear terms and conditioning of the resulting ma-
trices.

As a useful step toward a reliable implementation of such an adaptive
wavelet packet scheme, it would be interesting to study, in a simple model
case, the computational effectiveness of the compression procedures presented
in Section 5.7, by comparing the numerical results with the theoretical esti-
mates (5.7.1) and (5.7.6).
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That Gandalf should be late, does not bode well. But it is said: ”Do not meddle
in the affairs of Wizards, for they are subtle.” The choice is yours: to go or
wait.

"But I don’t think you need to go alone” exclaimed Gandalf. ”Not if you know
of anyone you can trust, and who would be willing to go by your side — and
that you would be willing to take into unknown perils. But if you look for a
companion, be careful in choosing! And be careful of what you say, even to
your closest friends! The enemy has many spies and many ways of hearing.”

At last the companions turned away, and never again looking back they rode
slowly homewards; and they spoke no word to one other until they came back
to the Shire, but each had great comfort in his friends on the long grey road.

In a chair, at the far side of the room facing the outer door, sat a woman.
Her long black hair rippled down her shoulders. ”Come dear folk!” she said,
taking Frodo by the hand. ”Laugh and be merry! I am Goldberry, daughter of
the River.”

"For you” she said to Sam, "I have only a small gift.” She put into his hand
a little box of plain grey wood, unadorned save for a single silver rune upon
the lid. ”In this box there is earth from my orchard. Though you should find
all barren and laid waste, there will be few gardens in Middle-earth that will
bloom like your garden, if you sprinkle this earth there. Then you may remem-

ber Galadriel.”

But Sam turned to Bywater, and so came back up the Hill, as the day was
ending once more. And he went on, and there was yellow light, and fire within;
and he was expected. He drew a deep breath. ”Well, I'm back,” he said.



