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INTRODUCTION
Three Rings for the Elven-kings under the sky,Seven for the Dwarf-lords in their halls of stone,Nine for Mortal Men doomed to die,One for the Dark Lord on his dark throneIn the Land of Mordor where the Shadows lie.One Ring to rule them all, One Ring to �nd them,One Ring to bring them all and in the darkness bind themIn the Land of Mordor where the Shadows lie.(J.R.R. Tolkien, The Lord of the Rings)Adaptive methods for di�erential equationsThe goals of the design of any numeri
al 
omputational method are1. reliability2. eÆ
ien
y .Reliability means that the 
omputational error (i.e. the di�eren
e between theexa
t and the approximate solution measured in a suitable norm) is 
ontrolledon a given toleran
e level. EÆ
ien
y means that the 
omputational work to
ompute a solution within the given toleran
e is essentially as small as possi-ble.It frequently happens in pra
ti
al problems that due to the nature of thedata a solution of a di�erential problem 
ould exhibit some singularities. Inthis 
ase to a
hieve the goals of reliability and eÆ
ien
y, one would like to in-
rease the a

ura
y of the approximate solution without using too many addi-tional degrees of freedom. One way to do this to use a 
omputational methodwhi
h is adaptive with feedba
k from the 
omputational pro
ess. Adaptivepro
edures for the numeri
al solution of partial di�erential equations startedin the late 70's and are now standard tools in s
ien
e and engineering: they3



4 Introdu
tion
onsist of a dis
retization method together with an adaptive algorithm, whosemain features are:(a) a stopping 
riterium guaranteeing error 
ontrol to a given toleran
e level;(b) a modi�
ation strategy in 
ase the stopping 
riterium is not satis�ed.A posteriori error estimators [4℄, [6℄, [7℄, [83℄, [86℄, [87℄ are an essential ingre-dient of any modi�
ation strategy and hen
e of any adaptive pro
edure. Theyare 
omputable quantities depending on the 
omputed solution(s) and datathat provide information about the quality of approximation and may thus beused to make eÆ
ient mesh modi�
ation.The ultimate purpose of adaptive methods, su
h as adaptive �nite elementmethods (FEM), is to 
onstru
t a sequen
e of meshes that would eventuallyequidistribute the approximation errors and redu
e, as a 
onsequen
e, the 
om-putational e�ort. To this end, the a posteriori error estimators are split intolo
al indi
ators whi
h are then employed to make lo
al mesh modi�
ations byre�nement and 
oarsening. This naturally leads to loops of the formSolve ! Estimate ! Re�ne/Coarsen: (0.0.1)Although these methods have been show to be very eÆ
ient from a 
ompu-tational point of view, the theory des
ribing the advantages of su
h methodsover their non-adaptive 
ounterparts is still not satisfa
tory. For results ofthis kind, at least in the 
ase of the numeri
al solutions of ellipti
 equationsby means of adaptive �nite element methods, we refer to [49℄, [71℄, [21℄.Re
ently a new 
lass of numeri
al adaptive s
hemes has been developed,namely adaptive wavelet methods.Adaptive wavelet s
hemesAdaptive wavelet s
hemes for the numeri
al solution of both linear and non-linear equations typi
ally rely on the empiri
al idea that lo
al error indi
atorsare dire
tly given by the size of the 
urrently 
omputed wavelet 
oeÆ
ients:a large 
oeÆ
ient indi
ates important 
u
tuations of the solution on the sup-port of the 
orresponding wavelet, and suggests to re�ne the approximationby adding wavelets at �ner s
ale in this region. This idea was �rst introdu
edin [67℄, for the dis
retization of initial value problem, then developed in [16℄,[65℄. Re
ently it was also applied to stationary problems for whi
h the possi-bility of 
omputing a residual allows to derive more pre
ise a posteriori errorindi
ators from the 
omputed wavelet 
oeÆ
ients. In the framework of linear



Introdu
tion 5ellipti
 PDE's, this approa
h leads to a more rigorous analysis of the waveletadaptive strategy, as introdu
ed in [10℄ and further developed in [36℄. In thisrespe
t we also re
all multilevel �nite element approa
h [22℄, [5℄.More re
ently new development on wavelets and nonlinear approximation[47℄, [48℄ have provided new tools for understanding and designing adaptivewavelet s
hemes for linear [17℄, [19℄, [28℄, [31℄ and nonlinear equations [30℄,[29℄, [79℄, [81℄, [82℄, requiring1. the estimation-evaluation of the a
tion of (linear or nonlinear) operatorson fun
tions expressed in terms of wavelet 
oeÆ
ients2. the tra
king of the signi�
ant 
oeÆ
ients as the iterative solution pro
essprogresses.Su
h 
lass of adaptive wavelet s
hemes strongly rely on the sparsity of thewavelet representation of the solution and of the involved operators allowingfor data 
ompression, as well as the ability to perform a

urate numeri
al 
om-putations in the 
ompressed representation.In this thesis we present and study adaptive wavelet s
hemes obtained by
oupling iterative algorithms for the solution of linear and nonlinear problemsand the te
hniques of nonlinear approximation. The approa
h we follow relieson a new paradigm whi
h has been put forward re
ently for a 
lass of linearproblems [80℄, [31℄. This new paradigm is based upon a 
onvergent iteratives
heme written for an equivalent in�nite dimensional problem formulated inthe wavelet 
oordinate domain and, as the iteration progresses, the adaptiveevaluation of the involved linear and nonlinear in�nite dimensional operators.Classi
al approa
h & New approa
hThe new approa
h to the adaptive solution of well-posed PDE's has been very
learly presented in [29℄. Let us point out, following su
h a paper, the di�er-en
es between the 
lassi
al paradigm and the new paradigm to numeri
allysolving (linear and nonlinear) equations.The 
lassi
al approa
h is 
on
erned with the following issues:(
.1) variational formulation of the 
ontinuous problem;(
.2) (adaptive) dis
retization of the in�nite dimensional problem so as toobtain a �nite system of algebrai
 equations;
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tion(
.3) numeri
al solution of the �nite system of equations, by means of a 
on-vergent iterative s
heme;(
.4) if the solution is not satisfa
tory, then perform a new (adaptive) dis-
retization.It is important to remark that performing the above approa
h yields a se-quen
e of �nite dimensional problems depending on the (adaptively) 
hosendis
retizations. As a 
onsequen
e the 
onvergen
e of the iterative s
heme de-pends itself on the 
hosen dis
retizations.The new approa
h is performed by essentially using the same ingredients as inthe 
lassi
al approa
h, but "re-ordered" in a new meaningful way. The basi
steps there read as follows:(n.1) variational formulation of the 
ontinuous problem;(n.2) transformation of the initial problem into an equivalent in�nite dimen-sional problem in `2;(n.3) derivation of a 
onvergent iterative s
heme for the in�nite dimensional`2-problem;(n.4) numeri
al realization of the iterative s
heme by an approximate (possi-bly adaptive) appli
ation of the involved in�nite dimensional operatorswithin some strategy of dynami
ally updated a

ura
y toleran
es.The main di�eren
e between the two approa
hes is the dis
retization step.In the 
lassi
al approa
h it is performed (step 
.2) at the beginning of the pro-
edure, by adaptively 
hoosing a dis
rete spa
e and then solving the resulting�nite dimensional problem, by using an iterative s
heme. On the 
ontraryin the new approa
h a 
onvergent iterative s
heme is written dire
tly for the1-dimensional problem and no dis
rete spa
es are �xed in advan
e. The(adaptive) dis
retization is then performed at the very end of the pro
edure(step n.4), by an (adaptive) approximate appli
ation of the involved in�nitedimensional operators, as the iterative s
heme progresses.It is important to remark that the 
onvergen
e of the1-dimensional itera-tive s
heme does not depend on the dis
retization, as it happens in the 
lassi
alapproa
h, but it is based on the "wavelet pre
onditioning" of the initial 
on-tinuous problem. Wavelet pre
onditioning relies on the 
hara
terization of theinvolved fun
tional spa
es (typi
ally Hilbert spa
es) in terms of the de
ay of



Introdu
tion 7the wavelet 
oeÆ
ients, i.e. the norm of a fun
tion is equivalent to a weighted`2-norm of its wavelet 
oeÆ
ients.In 
arrying out the new paradigm, for both linear and nonlinear equations,one has to fa
e di�erent issues, namely:(a) the design of stable 
onvergent iterative s
hemes for the 1-dimensionaldis
rete problem(b) the design of e
onomi
 approximate appli
ation s
hemes for the involvedlinear and nonlinear in�nite dimensional operators.(
) the 
hoi
e of toleran
es in (n:4) to ensure that the perturbed iteration
onverges to the 
orre
t solution;(d) the estimate of the 
omplexity of the s
heme.In this thesis we deal with issue (a) (only in the linear 
ase) and issue (b)(both in the linear and nonlinear 
ase).It 
ould happen (see e.g. non
onforming domain de
omposition and S
hur
omplement, Chapter 3) that the approximate appli
ation of an operator isequivalent to the approximate solution of an auxiliary problem. In this 
aseissue (a) redu
es to solve the auxiliary problem by using any strategy (e.g.�nite elements) able to give an approximate solution within a pres
ribed tol-eran
e.The basi
 s
hemeWe 
onsider the numeri
al solution of the problem:R(u) = 0 (0.0.2)where R : V ! W is a (linear or nonlinear) mapping between two Hilbertspa
es V;W .Chosen a wavelet basis f �g�, it is possible to transform (0.0.2) into wavelet
oordinates, obtaining an equivalent1-dimensional problem: �nd u 2 `2 su
hthat R(u) = 0; (0.0.3)where R : `2 ! `2 maps the sequen
e of the wavelet 
oeÆ
ients of v into thesequen
e of the wavelet 
oeÆ
ients of R(v), while u is the unknown in�nite
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tionarray 
ontaining the wavelet 
oeÆ
ients of the unknown solution u to the ini-tial problem (0.0.2).Remark that problem (0.0.3) is indeed equivalent to problem (0.0.2). Noapproximation is performed at this point. A

ording to (n:3) we wish todevise an iterative 
onvergent s
heme for the problem (0.0.3). The s
hemeswe shall 
onsider will have this formun+1 = un � BnR(un) (0.0.4)where the (in�nite, possibly iteration dependent) matrix Bn is yet to be 
hosenin order to guarantee the 
onvergen
e:(1) for Bn = �I we will obtain an 1-dimensional Ri
hardson s
heme,(2) for Bn = [R0(un)℄�1, where R0(u) is the Fr�e
het derivative of R at u, wewill obtain an 1 dimensional Newton s
heme.In order to arrive at 
omputable versions of the s
hemes (0.0.5), we will
ouple su
h iterative algorithms with the te
hniques of nonlinear wavelet ap-proximation [47℄, [48℄, obtaining a 
lass of (adaptive) wavelet methods, whosegeneral form is un+1 = PNi+1(un � BnR(un)) (0.0.5)where PN is a nonlinear proje
tor retaining the N largest, in absolute value,wavelet 
oeÆ
ients. The introdu
tion of the nonlinear proje
tion will resultin an impli
it form of adaptivity, in whi
h no spe
i�
 approximation spa
e is�xed, but the �nite number of degrees of freedom to be used is determined atea
h stage by the nonlinear proje
tor itself.For di�erent 
hoi
es of the matrix Bn we will obtain di�erent nonlinear waveletmethods, namely:(nl.1) for Bn = �I we will obtain theNonlinear Ri
hardson s
heme (Chapter3),(nl.2) for Bn = [R0(un)℄�1, where R0(u) is the Fr�e
het derivative of R at u, wewill obtain the Nonlinear Newton s
heme (Chapters 4).In this thesis we will perform an analysis of the two s
hemes, dealing with theissues of stability and 
onvergen
e. We will also deal, in a dire
t way, with theproblem of the evaluation-
ompression of linear operators and, in an indire
tway, with the same problem for nonlinear operators, resulting in a re
ipe forthe 
hoi
e, at ea
h step, of the involved toleran
es.



Introdu
tion 9The outline of the thesis is as follows: in Part I (Chapter 1 and Chapter 2)we re
all for the sake of 
ompleteness some results about linear and nonlinearwavelet approximation: almost all the material of these 
hapters is borrowedfrom [27℄. In Part II we design and study adaptive wavelet methods for linearequations (Chapter 3) and for nonlinear equations (Chapter 4). Finally inChapter 5 we dis
uss adaptive wavelet pa
kets methods for linear equations.
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Chapter 1 LINEAR WAVELETAPPROXIMATION
Days passed and the Day drew nearer. An odd-looking waggon laden withodd-looking pa
kages rolled into Hobbiton one evening and toiled up the Hillto Bag End. An old man was driving it all alone. He wore a tall pointed bluehat, a long grey 
loak, and a silver s
arf. He had a long white beard andbushy eyebrows that stu
k out beyond the brim of his hat. At Bilbo's frontdoor the old man began to unload: there were great bundles of �reworks of allsorts and shapes, ea
h labelled with a large red G and the elf-rune  . Thatwas Gandalf 's mark, of 
ourse, and the old man was Gandalf the Wizard,whose fame in the Shire was due mainly to his skill with �res, smokes andlight. His real business was far more diÆ
ult and dangerous, but theShire-folk knew nothing about it.(J.R.R. Tolkien, The Fellowship of the Ring)1.1 Some fun
tional spa
esIn this se
tion we want to des
ribe the smoothness spa
es that we shall needin what follows. There are two important ways to des
ribe smoothness spa
es:the �rst way is through notions su
h as di�erentiability and moduli of smooth-ness, the se
ond way is to expand fun
tions into a series of building blo
ks (forinstan
e Fourier or wavelet) and des
ribe smoothness as de
ay 
onditions onthe 
oeÆ
ients in su
h expansions. We shall give both des
riptions. The �rstis given below, while the se
ond will be given when we dis
uss wavelet de
om-positions.The most natural way of measuring the smoothness of a multivariate fun
-tion f is 
ertainly the order of di�erentiability, i.e. the maximal m su
h that��f; j�j := �1+�2+: : :+�d � m is 
ontinuous. For 
 � R , we de�ne Cm(
)to be the spa
e of 
ontinuous fun
tions whi
h have bounded and 
ontinuous13



14 Linear wavelet approximation Chapter 1partial derivatives ��, j�j � m. This spa
e is equipped with the normkfkCm(
) := supx2
 jf(x)j+ Xj�j=m supx2
 j��f(x)j;for whi
h it is a Bana
h spa
e.In order to measure the smoothness properties of a fun
tion in an averagesense, it is also natural to introdu
e Sobolev spa
es Wm;p(
) 
onsisting of allfun
tions f 2 Lp, with partial derivatives up to order m in Lp, p 2 [1;1℄.This spa
e is also a Bana
h spa
e, when equipped with the normkfkWm;p := kfkLp + jf jWm;p; jf jWm;p := Xj�j=m k��fkLp;where we used the notation j � j to denote the 
orresponding semi-norm. Allthe above spa
es share the 
ommon feature that the regularity index m is aninteger.How to generalize des
ribing the regularity of a fun
tion in a more pre
ise way,through fra
tional order of smoothness?In the 
ase of L2-Sobolev spa
es Hm := Wm;2 and when 
 = R , we 
an de�nean equivalent formula based on the Fourier transformkfkHm ' ZR(1 + j!j)2mjf̂(!)j2d!:For a non-integer s � 0, it is thus natural to de�ne the spa
e Hs as the set ofall L2 fun
tions su
h thatkfkHs ' ZR(1 + j!j)2sjf̂(!)j2d!is �nite.In the 
ase ofCm spa
es, we note that supx2
 jf(x+h)�f(x)j � (sup jf 0j)jhjif f 2 C1 for any h 2 R , whereas for an arbitrary f 2 C0, supx2
 jf(x + h)�f(x)j might go to zero arbitrarily slow as jhj ! 0. This motivates the def-inition of the H�older spa
e Cs, 0 < s < 1 
onsisting of those f 2 C0 su
hthat supx2
 jf(x+ h)� f(x)j � Cjhjs:If m < s < m + 1, a natural de�nition of Cs is given by f 2 Cm and ��f 2Cs�m; j�j = m. It is not diÆ
ult to prove that this property 
an also beexpressed by supx2
 j�nhf(x)j � Cjhjs;



Se
tion 1.1. Some fun
tional spa
es 15where n > s and �nh is the n-th order �nite di�eren
e operator de�ned re
ur-sively by �1hf(x) = f(x+ h)� f(x) and �nhf(x) = �1h(�n�1h )f(x).Let us now 
onsider the generalization of "s order of smoothness in Lp"for s non-integer and p di�erent from 2 and 1. In parti
ular we 
onsider two
lasses of fun
tion spa
es: Sobolev and Besov spa
es.Sobolev spa
es W s;p are de�ned (if m < s < m+ 1) by kfkW s;p = kfkLp +jf jW s;p with jf jW s;p := Xj�j=m Z
2 j��f(x)� ��f(y)jpjx� yj(s�m)p+d dxdy:We refer to [1℄ for a general introdu
tion.Besov spa
es Bsp;q, involve an extra parameter q and 
an be de�ned through�nite di�eren
es. These spa
es in
lude most of those we have listed so far asparti
ular 
ases for 
ertain ranges of indi
es. As we will show in the nextChapter, these spa
es are also produ
ed by general "interpolation te
hniques"between fun
tion spa
es of integer smoothness, and they 
an be exa
tly 
har-a
terized by the rate of multiresolution approximation error, as well as fromthe size properties of the wavelet 
oeÆ
ients. For these reasons we brie
yre
all their de�nitions and properties.We de�ne the n-th order Lp modulus of smoothness of f by!n(f; t;
)p = supjhj�t k�nhfkLp(
h;n);(h is a ve
tor in R of Eu
lidean norm less than t), where 
h;n := fx 2 
 :x + kh 2 
; k = 0; : : : ; ng. For p; q � 1, s � 0, the Besov spa
es Bsp;q(
)
onsists of those fun
tions f 2 Lp(
), su
h that(2sj!n(f; 2�j)p)j�0 2 `q;where n is an integer su
h that s < n. A natural norm for su
h a spa
e is thengiven bykfkBsp;q := kfkLp + jf jBsp;q ; jf jBsp;q := k(2sj!n(f; 2�j)p)j�0k`q :The spa
e Bsp;q represents "s order of smoothness measured in Lp", with theparameter q allowing a �ner tuning on the degree of smoothness - one hasBsp;q1 � Bsp;q2 if q1 � q2 - but plays a minor role in 
omparison to s sin
eBs1p;q1 � Bs2p;q2; if s1 � s2;



16 Linear wavelet approximation Chapter 1regardless of the value of q1 and q2.More generally, it 
an be proved [78℄ that W s;p = Bsp;p, when s is not aninteger. Indeed the spa
es Wm;p are not Besov spa
es for m 2 N and p 6= 2.Let us now state the so-
alled Sobolev embedding theorem [1℄:W s1;p1 � W s2;p2 if s1 � s2 � d(1=p1 � 1=p2);ex
ept in the 
ase where p2 = +1 and s1 � d(1=p1 � 1=p2) is an integer, forwhi
h one needs to assume that s1 � s2 > d(1=p1 � 1=p2):In the 
ase of Besov spa
es, a similar embedding relation [78℄ is given byBs1p1;p1 � Bs2p2;p2 if s1 � s2 � d(1=p1 � 1=p2)with no restri
tion on the indi
es s1; s2 � 0 and p1; p2 � 1.The Besov spa
es 
an also be de�ned for p and q less than 1. This extension,whi
h will be of parti
ular importan
e in the study of nonlinear and adap-tive approximation, is the sour
e of additional diÆ
ulties whi
h go beyond thes
ope of this introdu
tion [73℄.Let us now dis
uss the topi
 of 
hara
terizing fun
tional spa
es through wavelet
oeÆ
ients.1.2 Wavelets: an overviewWe re
all some general notations and features for wavelet bases [69℄, [45℄. Theyare usually asso
iated with multiresolution approximation spa
es fVjgj�0:De�nition A multiresolution analysis (MRA) is de�ned as a sequen
e of
losed subspa
es Vj of L2(R), j 2 Z, with the following properties1. Vj � Vj+1,2. v(x) 2 Vj , v(2x) 2 Vj+1,3. v(x) 2 V0 , v(x+ 1) 2 V0,4. [+1j=�1Vj is dense in L2(R) and \+1j=�1Vj = f0g,5. A 
ompa
tly support s
aling fun
tion ' 2 V0, with a non-vanishing inte-gral exists su
h that the 
olle
tion f'(x� k) : k 2 Zg is a Riesz basisof V0.



Se
tion 1.2. Wavelets: an overview 17It is immediate to note that the 
olle
tion of fun
tions f'j;k : k 2 Zg, with'j;k(x) = 2j=2'(2jx � k) is a Riesz basis of Vj. De�ning � = (j; k), j�j = jand �j := f(j; k) : k 2 Zg, we have that Vj is generated by a lo
al basisf'�g�2�j , whose supports are 
ontrolled byjsupp('�)j � C2�j; (1.2.1)if � 2 �j and satisfy#f� 2 �j : supp('�) \ supp('�) 6= 0g � C; (1.2.2)with C independent of � and j.We will use Wj to denote a spa
e 
omplementing Vj in Vj+1, i.e. a spa
ethat satis�es Vj+1 = Vj �Wj;where the symbol � stands for dire
t sum.The 
omplement spa
eWj, whi
h 
ontains the "detail" information neededto go from an approximation at resolution j to an approximation j+1, is gen-erated by a similar lo
al basis f �g�2�j , �j = �j+1 n �j, with  � :=  j;k(x) =2j=2 (2jx� k).The full multis
ale wavelet basis f �g�2�, where � := [j�0�j, is a Rieszbasis for L2(R): it allows to expand an arbitrary fun
tion f intof =X�2� d� �;where � := [j�0�j with the 
onvention that we in
orporate the fun
tionsf'�g�2�0 into f �g�2�0 and for all sequen
es fd�g�2� we have the norm equiv-alen
e kX�2� d� �k2L2 �X�2� jd�j2; (1.2.3)where the 
oeÆ
ients d� in the expansion of f are named wavelet 
oeÆ
ients.In the 
ase of biorthogonal wavelets [32℄ the 
oeÆ
ients d� are obtained byan inner produ
t d� = (f; ~ �), where the dual wavelet ~ � is an L2 fun
tion. Inthe standard biorthogonal 
onstru
tions, a dual s
aling fun
tion ~' and a dualwavelet ~ exist and generate a dual multiresolution analysis with subspa
es~Vj and ~Wj, su
h that ~Vj ? Wj Vj ? ~Wj:Moreover the dual fun
tions also have to satisfy( ~'; '(� � l)) = Æl ( ~ ;  (� � l)) = Æl;



18 Linear wavelet approximation Chapter 1where Æl = 1 if l = 0, zero otherwise.The dual wavelet system f ~ �g�2� (risp. the dual s
aling system f'�g�2�) hassimilar lo
al support properties as the primal wavelets  � (risp. the primals
aling fun
tions '�).It is useful to introdu
e the following proje
tion operators:Pj : L2 ! Vj: f ! Pjf =Xk2Z(f; ~'j;k)'j;k;Qj : L2 !Wj: f ! Qjf =Xk2Z(f; ~ j;k) j;k (1.2.4)and the 
orresponding dual proje
tors:P �j : L2 ! ~Vj: f ! Pjf =Xk2Z(f; 'j;k) ~'j;k;Q�j : L2 ! ~Wj: f ! Q�jf =Xk2Z(f;  j;k) ~ j;k:As far as we have only 
onsidered the univariate 
ase; in the standard 
on-stru
tions of wavelets on the Eu
lidean spa
e R , the s
aling fun
tions havethe form '� = 'j;k = 2jd=2'(2j � �k), k 2 Zd and similarly for the wavelets � =  j;k = 2jd=2 (2j � �k), k 2 Zd, so that �j is naturally viewed as the uni-form mesh 2�jZd. In the 
ase of a general domain 
 2 R , spe
ial adaptationsof the basis fun
tions are required near the boundary �
 (see e.g. [68℄, [33℄,[3℄, [26℄, [40℄, [56℄, [70℄, [13℄).The pra
ti
al advantage of su
h a wavelet setting is the possibility ofswit
hing between the standard dis
retization of f 2 Vj in the basis f'�g�2�jand its multis
ale representation in the basis f �gj�j<j, by means of fast O(N)de
omposition re
onstru
tion algorithms, where N � 2dj denotes the dimen-sion of Vj in the 
ase where 
 is bounded.An important feature of wavelet bases is the possibility of 
hara
terizingthe smoothness of a fun
tion f through its wavelet 
oeÆ
ients or the linearapproximation kf�Pjfk. Never less in next se
tion we will dis
uss extensively
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tion 1.3. Approximation & smoothness 19this topi
, we would re
all here a parti
ular result: for fun
tions of d variables,Sobolev spa
es are 
hara
terized bykfkHs � kP0fk2L2 +Xj�0 22sjkf � Pjfk2L2 �X�2� 22sj�jjd�j2; (1.2.5)whi
h re
e
ts the intuitive idea that the linear approximation error de
ays likeO(2�sj) or O(N�s=d), provided that f has s derivatives in L2.1.3 Approximation & smoothnessOne of the goal of the approximation theory is to relate the analyti
al prop-erties of arbitrary fun
tions (in parti
ular smoothness) with the a

ura
y oftheir approximation by simpler fun
tions, su
h as polynomials, trigonometri
series or �nite elements.As an instan
es we re
all the following result of �nite element approxima-tion in L2-Sobolev spa
es: if 
 is a polygonal domain, Th, 0 < h < hmax, afamily of regular triangulation with mesh size h, and Vh a �nite element spa
ebuilt from Th that 
ontains polynomials up to degree n � 1 and is 
ontainedin W s;2, then for s � t � n one has the estimateinfg2Vh kf � gkW s;2 � Cht�sjf jW t;2; (1.3.1)where C does not depend on f and h. For the multiresolution spa
es Vj �Vh=2�j the above inequality takes the forminfg2Vj kf � gkW s;2 � C2�(t�s)jjf jW t;2: (1.3.2)These results express that a smoothness property implies an approximationrate. It turns out that a large number of smoothness 
lasses, in
luding L2-Sobolev spa
es, 
an be 
hara
terized from the rate of de
ay of the approxima-tion error in the spa
es Vj, or also from the summability and de
ay propertiesof the wavelet 
oeÆ
ients.Let us now fo
us on the 
hara
terization from the approximation error:given a sequen
e of approximation spa
es Vj and introdu
eddistLp(f; Vj) := infg2Vj kf � gkLp;we would like to relate the propertydistLp(f; Vj) � O(2�sj);to some 
lassi
al notion of smoothness satis�ed by f . To be more pre
ise weintrodu
e the following de�nition



20 Linear wavelet approximation Chapter 1De�nition If X is a Bana
h spa
e and (Vj)j�0 a nested sequen
e of subspa
esof X su
h that [j�0Vj is dense in X. For s > 0 and 1 � q � 1, we de�nethe approximation spa
e Asq(X) related to the sequen
e Vj byAsq(X) := ff 2 X : (2sjdistX(f; Vj))j�0 2 `qg:In the 
ase where X is a Lebesgue spa
e, we use the notation Asp;q := Asq(Lp).Roughly speaking, the spa
eAsq(X) 
ontains those fun
tions su
h that distX(f; Vj) �O(2�sj), with a tuned information provided by the extra parameter q. One
an 
he
k that it is a proper subspa
e of X and it is a Bana
h spa
e whenequipped with the normkfkAsq(X) := kfkX + k(2sjdistX(f; Vj))j�0k`q :What we a
tually want is to prove that under spe
i�
 assumptions on themultiresolution approximation spa
es, the identityAsp;q = Bsp;q (1.3.3)holds together with the norm equivalen
eskfkBsp;q ' kfkAsp;q and jf jBsp;q ' jf jAsp;q : (1.3.4)Following [27℄, in order to prove (1.3.3) and (1.3.4) we need dire
t and inverseestimates. This is the topi
 of what follows.1.3.1 Dire
t estimatesLet us �rst 
olle
t a preliminary result, originally due to Lebesgue,Lemma 1.3.1: If P is a bounded proje
tor from a Bana
h spa
e X to a 
losedsubspa
e Y , then for all f 2 X,infg2Y kf � gkX � kf � PfkX � (1 + kPk)) infg2Y kf � gkX;with kPk = supkfkX=1 kPfkX .Now we 
onsider the following result about the Lp stability of the proje
torPj : Lp ! Vj.Theorem 1.3.1: Let 1 � p � 1. Assume that ' 2 Lp and ~' 2 Lp0 where1=p+1=p0 = 1. Then the proje
tors Pj are uniformly bounded in Lp. Moreoverthe basis 'j;k is Lp-stable, in the sense that the equivalen
ekXk2Zd 
k'j;kkLp � 2dj(1=2�1=p)k(
k)k2Zdk`p; (1.3.5)holds with 
onstants that do not depend on j.
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ording to Lemma 1.3.1 it follows that if Pj is Lp-stable uniformly in j, theninfg2Vj kf � gkLp � kf � PjfkLp; (1.3.6)i.e. the error estimate kf � PjfkLp is optimal in Vj.Now we are ready state a dire
t estimate for this parti
ular approximationpro
ess [27℄:Theorem 1.3.2: Let 1 � p � 1. Assume that ' 2 Lp and ~' 2 Lp0 where1=p+ 1=p0 = 1. Then we havekf � PjfkLp . 2�njjf jWn;p; (1.3.7)where n� 1 is the order of polynomial exa
tness in Vj.An important variant of the dire
t estimate 1.3.7 is the Whitney estimate,whi
h involves the modulus of smoothness [27℄:Theorem 1.3.3: Let 1 � p � 1. Assume that ' 2 Lp and ~' 2 Lp0 where1=p+ 1=p0 = 1. Then we havekf � PjfkLp . !n(f; 2�j)p; (1.3.8)where n� 1 is the order of polynomial exa
tness in Vj.A simple 
orollary of the Whitney estimate is a dire
t estimate for generalBesov spa
es [27℄.Corollary 1.3.1: Let 1 � p � 1. Assume that ' 2 Lp and ~' 2 Lp0 where1=p+ 1=p0 = 1. Then we havekf � PjfkLp . 2�jsjf jBsp;q ; (1.3.9)for 0 < s < n, where n� 1 is the order of polynomial exa
tness in Vj.1.3.2 Inverse estimatesInverse estimate takes into a

ount the smoothness properties of the approxi-mation spa
es Vj [27℄:Theorem 1.3.4: Let 1 � p � 1. Assume that ' 2 Lp and ~' 2 Lp0 where1=p+ 1=p0 = 1 and that ' 2 W n;p. ThenkfkWn;p � C2njkfkLp; if f 2 Vj; (1.3.10)with a 
onstant C that does not depend on j.



22 Linear wavelet approximation Chapter 1Another type of inverse estimate involves the modulus of smoothness [27℄:Theorem 1.3.5: Let 1 � p � 1. Assume that ' 2 Lp and ~' 2 Lp0 where1=p+ 1=p0 = 1 and that ' 2 W n;p. Then we have!n(f; t)p � C[minf1; 2jtg℄nkfkLp; if f 2 Vj; (1.3.11)with a 
onstant C that does not depend on j.Our last inverse estimate deals with general Besov spa
es of integer or fra
-tional order [27℄.Theorem 1.3.6: Let 1 � p � 1. Assume that ' 2 Lp and ~' 2 Lp0 where1=p+ 1=p0 = 1 and that ' 2 Bsp;q. ThenkfkBsp;q � C2sjkfkLp if f 2 Vj; (1.3.12)with a 
onstant C that does not depend on j.By 
ombining the above dire
t and inverse estimates, we obtain more gen-eral dire
t and inverse estimates involving Besov norms on both side of theinequalities [27℄:Corollary 1.3.2: Let 1 � p; q1; q2 � 1 and 0 < s < t. Assume that ' 2 Lpand ~' 2 Lp0. If ' 2 Bsp;q1 and t < n where n � 1 is the degree of polynomialreprodu
tion in Vj, one has the dire
t estimatekf � PjfkBsp;q1 . 2�j(t�s)jf jBtp;q2 : (1.3.13)When s and/or t are integers, these estimates also hold with the 
lassi
alSobolev spa
e W s;p and/or W t;p and t up to n.Proof: [27℄ First of all we note that:kf � PjfkBsp;q1 �Xl�j kPl+1f � PlfkBsp;q1 : (1.3.14)Combining the inverse estimate of Theorem 1.3.6 and the dire
t estimate ofCorollary 1.3.1, we obtainkPl+1f �PlfkBsp;q1 . 2slkPl+1f �PlfkLp . 2�l(t�s)jPl+1f �Plf jBtp;q2 : (1.3.15)This together with (1.3.14) yields the thesis. The 
ase of 
lassi
al Sobolevspa
es is treated in the same way, using the dire
t and inverse estimate ofTheorem 1.3.2 and 1.3.4. 2



Se
tion 1.3. Approximation & smoothness 23Remark 1.3.1: Inequality (1.3.13) tells us that an error estimate O(2�j(t�s))in Bsp;p is a
hieved by a linear method for fun
tions in Btp;p, with 0 < s < t.We will see in the next Chapter that the same error estimate in Bsp;p 
an bea
hieved by a nonlinear method for less regular fun
tions.Corollary 1.3.3: Let 1 � p; q1; q2 � 1 and 0 < s < t. Assume that ' 2 Lpand ~' 2 Lp0. If ' 2 Btp;q2 and s < n where n � 1 is the degree of polynomialreprodu
tion in Vj, one has the inverse estimatekfkBtp;q2 . 2j(t�s)kfkBsp;q1 if f 2 Vj: (1.3.16)When s and/or t are integers, these estimates also hold with the 
lassi
alSobolev spa
e W s;p and/or W t;p and s up to n.Proof: [27℄ First we note that:kfkBtp;q2 � kP0fkBtp;q2 + j�1Xl=0 kPl+1f � PlfkBtp;q2 : (1.3.17)We 
learly have kP0fkBtp;q2 . kfkLp . kfkBsp;q1 . For the remaining termswe 
ombine the inverse estimate of Theorem 1.3.6 and the dire
t estimate ofCorollary 1.3.1 and obtainkPl+1f � PlfkBtp;q2 . 2tlkPl+1f � PlfkLp . 2�l(t�s)jf jBsp;q1 : (1.3.18)This together with (1.3.17) yields the inverse estimate of the thesis. The 
aseof 
lassi
al Sobolev spa
es is treated in the same way, using the dire
t andinverse estimate of Theorem 1.3.2 and 1.3.4. 21.3.3 SmoothnessNow we are ready to prove [27℄ the 
hara
terization (1.3.3) of the approxima-tion spa
e Asp;q in terms of the Besov smoothness:Theorem 1.3.7: Let 1 � p � 1. Assume � 2 Lp and ~� 2 Lp0, where1p + 1p0 = 1, then we have the norm equivalen
eskfkBtp;q � kP0fkLp + k(2tjkQjfkLp)j�0k`q (1.3.19)and kfkAtp;q � kfkBtp;q ; (1.3.20)for all t < minfn; sg, where n � 1 is the order of polynomial reprodu
tion ofthe Vj spa
e and s is su
h that � 2 Bsp;qo for some q0.



24 Linear wavelet approximation Chapter 1In order to prove the Theorem we need the following two Lemmas (dis
reteHardy inequalities):Lemma 1.3.2: If (aj)j�0 is a positive sequen
e and bj = 2�mjPj̀=0 2m`a`,with 0 < s < m, one hask(2sjbj)j�0k`q . k(2sjaj)j�0k`q ;for all q 2 [1;1℄Proof: Let us �rst 
onsider the 
ase q = +1. Assuming aj � Ca2�sj wehave bj � Ca2mjPj̀=0 2(m�s)` . Ca2�sj.For q <1, we de�ne q0 su
h that 1q + 1q0 = 1 and � = m�j2 > 0. Using H�olderinequality we obtainXj�0(2sjbj)q = Xj�0 2(s�m)qj  jX̀=0 2m`a`!q �� Xj�0 2(s�m)qj " jX̀=0 �2(m��)`a`�q#" jX̀=0 �2�`�q0#q=q0. Xj�0 2��qj " jX̀=0 �2(m��)`a`�q#= X̀�0 �2(m��)`a`�qXj�` 2��qj. X̀�0 �2m`a`�q : 2Lemma 1.3.3: If (aj)j�0 is a positive sequen
e and bj =P`�j a`, with s > 0,one has k(2sjbj)j�0k`q . k(2sjaj)j�0k`q ;for all q 2 [1;1℄Proof: The 
ase q = +1 is treated in the same way as in the previousLemma. For q < +1, we de�ne q0 su
h that 1q + 1q0 = 1 and s0 = s=2. Using



Se
tion 1.3. Approximation & smoothness 25H�older inequality we haveXj�0(2sjbj)q = Xj�0 2sqj X̀�j a`!q �� Xj�0 2sqj "X̀�j �2s0`a`�q#"X̀�j �2�s0lq0�#q=q0. Xj�0 2s0qj "X̀�j �2s0`a`�q#= X̀�0 �2s0`a`�q X̀j=0 2s0qj. X̀�0 �2s`a`�q : 2Proof of Theorem 1.3.7: [27℄ Here we shall dire
tly 
ompare the modulusof smoothness whi
h is involved in the de�nition of the Besov spa
es Btp;q andthe quantities kQjfkLp. In one dire
tion, from Theorem 1.3.6, we havedistLp(f; Vj) � kf � PjfkLp . !n(f; 2�j)p; (1.3.21)and thus kQjfkLp . !n(f; 2�j)p. It follows that the Asp;q norm and the righthand side of 1.3.19 are both 
ontrolled by the Bsp;q norm. In order to prove the
onverse result, we remark that the inverse estimate of Theorem 1.3.6 impliesthe simpler inverse estimate!n(f; t)p . [minf1; t2jg℄skfkLp; if f 2 Vj: (1.3.22)Indeed this property holds for the values t = 2�l; l � j, by Theorem 1.3.6 andthe other values of t are treated by the monotoni
ity of !n(f; t)p.For f 2 Lp, we let fj 2 Vj be su
h thatkf � fjkLp � 2distLp(f; Vj): (1.3.23)



26 Linear wavelet approximation Chapter 1We then have!n(f; 2�j) � !n(f0; 2�j) + jXl=0 !n(fl+1 � fl; 2�j)p + !n(f � fj; 2�j)p. 2�sjkf0kLp + 2�sj[ j�1Xl=0 2slkfl+1 � flkLp℄ + kf � fjkLp. 2�sjkf0kLp + 2�sj[ jXl=0 2slkf � flkLp℄. 2�sjkfkLp + 2�sj[ jXl=0 distLp(f; Vl)℄;where we used the inverse estimate 1.3.23.In order to 
on
lude the proof, we apply Lemma 1.3.2 with al = distLp(f; Vl)and we 
an thus 
on
lude that the Bsp;q norm is 
ontrolled by the Asp;q norm.We 
an do the same reasoning with Pjf instead of fj and repla
e distLp(f; Vj)by kf � PjfkLp for the 
hara
terization of Bsp;q. Finally, on
e we note thatkf � PjfkLp �Pl�j kQlfkLp, we 
an use the Lemma 1.3.3 with al = kQlfkLpto repla
e kf � PjfkLp by kQjfkLp and 
on
lude the proof. 21.4 Approximation & interpolation spa
es1.4.1 Interpolation theory: an overviewIn the present se
tion we shall des
ribe a more general me
hanism that allowsto identify the approximation spa
es Asp;q(X) with spa
es obtained by interpo-lation theory. Although this me
hanism 
an be avoided when proving (1.3.3)and (1.3.4), its usefulness will appear in parti
ular in the nonlinear 
ontext.Interpolation spa
es arise in the study of the following problem of analysis.Given two spa
es X and Y , for whi
h spa
es Z it is true that ea
h linearoperator T mapping X and Y boundedly into themselves automati
ally mapsZ boundedly into itself? Su
h spa
es Z are 
alled interpolation spa
es for thepair X; Y and the problem is to 
onstru
t and to 
hara
terize the spa
e Z.The 
lassi
al result in this dire
tion is the Riesz-Thorin theorem, whi
h statesthat the spa
es Lp, 1 < p < 1 are interpolation spa
es for the pair L1; L1.There are two primary methods for 
onstru
ting interpolation spa
es Z: the
omplex method as developed by J.L. Lions and A.P. Calder�on and the realmethod of J.L. Lions and J. Peetre. We shall fo
us on the latter approa
h and



Se
tion 1.4. Approximation & interpolation spa
es 27we give below some of its main features. A detailed treatment 
an be foundin [9℄, [8℄.Let X and Y be a pair of Bana
h fun
tion spa
es. To su
h a pair, we asso
iatethe so-
alled K-fun
tional de�ned for f 2 X + Y and t � 0 byK(f; t) = K(f; t; X; Y ) := infa2X;b2Y;a+b=f[kakX + tkbkY ℄:The fun
tional has some elementary properties:- it is 
ontinuous, nonde
reasing and 
on
ave with respe
t to t.- if X \Y is dense in Y , then K(f; 0) := 0. Similarly, if X \Y is dense inX, then the limit limt!+1K(f; t)=t = 0:For � 2℄0; 1[ and 1 � q � +1, we de�ne a family of intermediate spa
esX \ Y � [X; Y ℄�;q � X + Y as follows: [X; Y ℄�;q 
onsists of those fun
tionssu
h that kfk[X;Y ℄�;q := kt�qK(f; t)kLq(℄0;+1[;dt=t); (1.4.1)is �nite. One easily 
he
ks that the above de�ned intermediate spa
es inheritthe Bana
h spa
es stru
ture of X and Y .In the present 
ontext we shall be interested in interpolation between spa
esof representing various degrees of smoothness. In parti
ular we shall alwayswork in the situation where Y � X with a 
ontinuous embedding and Y isdense in X. A typi
al example is X = Lp and Y = Wm;p. In this spe
i�
situation, we write K(f; t) = infg2Y kf � gkX + tkgkY ;and make a few additional remarks:- the K fun
tional is bounded at in�nity sin
e K(f; t) � kfkX :Therefore, the �niteness of (1.4.1) is equivalent tokt��K(f; t)kLq(℄0;A[;dt=t) < +1; (1.4.2)for some �xed A > 0 and we 
an use this modi�ed expression as anequivalent norm for [X; Y ℄�;q.- due to the monotoni
ity of K(f; t) in t, we also have an equivalent dis-
rete norm given bykfk[X;Y ℄�;q := k(�jqK(f; ��j))j�0k`q ;for any �xed � > 1.



28 Linear wavelet approximation Chapter 11.4.2 Smoothness via interpolation spa
esThe main result of this se
tion 
onne
ts approximation spa
es Asp;q and inter-polation spa
es [X; Y ℄�;q by means of dire
t and inverse estimates [27℄:Theorem 1.4.1: Assume Vj is a sequen
e of approximation spa
esVj � Vj+1 � : : : � Y � X;su
h that for some m > 0, one has a Ja
kson-type estimatedistX(f; Vj) = infg2Vj kf � gkX . 2�mjkfkY ; (1.4.3)and a Bernstein-type estimatekfkY . 2mjkfkX if f 2 Vj: (1.4.4)Then, for s 2℄0; m[, one has the norm equivalen
ek(2jsK(f; 2�mj))j�0k`q � kfkX + k(2jsdistX(f; Vj))j�0k`q ; (1.4.5)and thus [X; Y ℄�;q = Asq(X) for s = �m.Proof: [27℄ We need to 
ompare the K-fun
tional K(f; 2�mj) and the errorof best approximation distX(f; Vj). In one dire
tion, this 
omparison is simple:for all f 2 X, g 2 Y and gj 2 Vj, we havedistX(f; Vj) � kf � gjkX � kf � gkX + kg � gjkX : (1.4.6)Minimizing kg � gjkX over gj 2 Vj and using a Ja
kson-type estimate, weobtain distX(f; Vj) . kf � gkX + 2�mjkgkY : (1.4.7)Finally, we minimize over g 2 Y to obtaindistX(f; Vj) . K(f; 2�mj): (1.4.8)Sin
e kfkX . K(f; 1) (by the 
ontinuous embedding of Y into X and thetriangle inequality), we thus have proved that kfkAsq(X) . kfk[X;Y ℄�;q .In the other dire
tion, we let fj 2 Vj be su
h thatkf � fjkX � 2distX(f; Vj); (1.4.9)



Se
tion 1.4. Approximation & interpolation spa
es 29and we writeK(f; 2�mj) � kf � fjkX + 2�mjkfkY� kf � fjkX + 2�mj[kf0kY + kf1 � f0kY + : : :+ kfj � fj�1kY ℄. kf � fjkX + 2�mj[kf0kX + j�1Xl=0 2mlkfl+1 � flkX ℄. 2�mjkf0kX + 2�mj[ jXl=0 2mldistX(f; Vl)℄; (1.4.10)where we have used the inverse inequality (together with the fa
t that fl+1 �fl 2 Vl+1) and the inequality kfkX � kfkX + 2distX(f; V0) � 3kfkX:In order to 
on
lude the proof, we �rst remark that the term 2�mjkfkX satis�esk(2sj2�mjkfkX)j�0k`q . kfkX (1.4.11)and we 
on
entrate on the se
ond term. Using Lemma 1.3.2 (dis
rete Hardyinequality) with aj = distX(f; Vj) allows to estimate the weighted `q norm ofthe se
ond term and to 
on
lude that kfk[X;Y ℄�;q . kfkAsq(X). 2The following variant [27℄ of the previous theorem deals with similar normequivalen
es involving spe
i�
 approximation operators Pj, rather than theerror of best approximation distX(f; Vj)Theorem 1.4.2: Assume Vj is a sequen
e of approximation spa
esVj � Vj+1 � : : : � Y � X;suppose that we have kPjf � fkX . 2�mjkfkY ;for a family of linear operators Pj : X ! Vj whi
h is uniformly bounded in X.Then, for s = �m, s 2℄0; m[, the Asq(X) and the [X; Y ℄�;q norms are equivalentto kP0fkX + k(2sjkf � PjfkX)j�0k`q ; (1.4.12)and to kP0fkX + k(2sjkQjfkX)j�0k`q (1.4.13)where Qj = Pj+1 � Pj.Proof: [27℄ We �rst 
onsider (1.4.12). In one dire
tion, sin
edistX(f; Vj) � kf � PjfkX ; (1.4.14)



30 Linear wavelet approximation Chapter 1and kfkX � kP0fkX + kf � P0fkX ; (1.4.15)we 
learly have that the norm of Asq(X) is 
ontrolled by (1.4.12). In the otherdire
tion, we operate as in the inequality (1.4.10) in the proof of Theorem 1.4.1:repla
ing fj by Pjf proves that the [X; Y ℄�;q norm is 
ontrolled by (1.4.12).We then turn to (1.4.13). In one dire
tion we havekQjfkX � kf � Pj+1fkX + kf � PjfkX ; (1.4.16)whi
h shows that (1.4.13) is 
ontrolled by (1.4.12). In the other dire
tion, wewrite kf � PjfkX �Xl�j kQlfkX: (1.4.17)Using Lemma 1.3.3 (dis
rete Hardy inequality) with aj = kQjfkX allows to
on
lude that (1.4.12) is 
ontrolled by (1.4.13). 2Now we want to prove the equivalen
e between Asp;q and Bsp;q and the normequivalen
e 1.3.4, by using the general interpolation results obtained above.The key observation is that Besov spa
es are obtained by the real interpolationapplied to Sobolev spa
es. For example the following result [62℄ is true ongeneral Lips
hitz domains 
 2 R :Theorem 1.4.3: It holds Bsp;q = [Lp;W n;p℄�;q;with s = �n, � 2℄0; 1[.1.5 Wavelets & fun
tional spa
esIn this se
tion we show how a large number of smoothness 
lasses 
an be
hara
terized from the summability and de
ay properties of the wavelet 
oef-�
ients.1.5.1 Besov spa
es with p � 1The following result gives an equivalent norm of Besov spa
es Bsp;q, p; q � 1, interms of the wavelet 
oeÆ
ients, by using 
hara
terization (1.3.19) (obtainedthrough the "dire
t" way) or equivalently by using 
hara
terization (1.4.12)(obtained through the \interpolation approa
h"):



Se
tion 1.5. Wavelets & fun
tional spa
es 31Corollary 1.5.1: If f =P�2� 
� �, then we have the norm equivalen
ekfkBsp;q � k�2sj2d( 12� 1p )jk(
�)�2�jk�j k`q ; (1.5.1)under the assumptions of Theorem 1.3.7.Proof: It suÆ
es to remark that for j � 0, we have the equivalen
ekQjfkLp � 2d(1=2�1=p)jk(
�)�2�jk`p; (1.5.2)by the same arguments as for the proof of Theorem 1.3.1. 2This last result also shows that wavelet bases are un
onditional bases for allthe Besov spa
es in the above range: the 
onvergen
e of the series holds in the
orresponding norm without being a�e
ted by a rearrangement or a 
hange ofsign of the 
oeÆ
ients, sin
e it only depends on the �niteness of the right-handside of (4.2.4).1.5.2 Besov spa
es with 0 < p < 1So far, we have only 
onsidered values of p in the range [1;1℄, whereas Besovspa
es 
an be de�ned for 0 < p < 1. In parti
ular the 
ase 0 < p < 1 turnsout to be 
ru
ial for nonlinear approximation. Here we sket
h, following [27℄,how to extend the above results to the 
ase 0 < p < 1.A �rst result is that, although we do not have the Lp boundness of Pj westill have some Lp stability for the s
aling fun
tion basis. Here we 
ontinueto assume that ('; ~') are a pair of 
ompa
tly supported biorthogonal s
alingfun
tions, with ' 2 Lr and ~' 2 Lr0, for some r � 1, 1=r0 + 1=r = 1.Theorem 1.5.1: Assuming that ' 2 Lp, for p > 0, one has the Lp stabilityproperty kXk 
k'j;kkLp � 2dj(1=2�1=p)k(
k)kk`p; (1.5.3)with 
onstants that do not depend on j.An immediate 
onsequen
e of Theorem 1.5.1 is that we 
an extend the inverseinequalities of Theorems 1.3.5 and 1.3.6 to the 
ase p < 1.Theorem 1.5.2: Under the assumption of the Theorem 1.5.1 and if ' 2 Bnp;q,for some q > 0, one has!n(f; t)p � C[minf1; t2jg℄nkfkLp if f 2 Vj: (1.5.4)If ' 2 Bsp;q one has kfkBsp;q . 2sjkfkLp if f 2 Vj: (1.5.5)



32 Linear wavelet approximation Chapter 1If we want now to extend the Whitney estimate (1.3.8) to the 
ase p < 1, weare fa
ing the problem that Lp fun
tions are not ne
essarily distributions andthat the operator Pj is not a-priori well de�ned in these spa
es (unless we putrestri
tions on s). One way to 
ir
umvent this problem is to 
onsider the errorof best-approximation distLp(f; Vj) rather than kf � PjfkLp.Theorem 1.5.3: Under the same assumptions as in Theorem 1.5.1, we havedistLp(f; Vj) . !n(f; 2�j)p; (1.5.6)where n� 1 is the order of polynomial exa
tness in Vj.By using Theorems 1.5.2 and 1.5.3 it is possible to extend [27℄ the identityAsp;q = Bsp;q to all possible values of p and q:Theorem 1.5.4: Assuming that ' 2 Lp, for p > 0, we have the norm equiv-alen
e kfkAtp;q � kfkBtp;q ; (1.5.7)for all t < min(n; s), where n � 1 is the order of polynomial reprodu
tion ofthe Vj spa
es and s is su
h that ' 2 Bsp;q0, for some q0 > 0.If we now want to use the spe
i�
 proje
tors Pj or the wavelet 
oeÆ
ients to
hara
terize the Bsp;q-norm for p < 1, we are obliged to impose 
ondition s su
hthat Pjf will at least be well de�ned on the 
orresponding spa
e. We shallnow see that su
h 
hara
terizations are feasible if s is large enough so thatBsp;q is embedded in some Lr, r � 1. By using the above results it is possibleto prove [27℄ the following result whi
h extends the 
hara
terization of Besovspa
es to the 
ase 0 < p < 1:Theorem 1.5.5: Assume that ' 2 Lr and ' 2 Lr0 for some r 2 [1;1℄,1=r + 1=r0 = 1 or that � 2 C0 and ~' is a Radon measure, in whi
h 
ase weset r =1. Then, for 0 < p � r, one has the norm equivalen
ekfkBsp;q � kP0fkLp + k(2sjkQjfkLp)j�0k`q ; (1.5.8)for all s > 0 su
h that d(1=p� 1=r) < s < min(t; n), where n� 1 is the orderof polynomial reprodu
tion in Vj and t is su
h that � 2 Btp;q0, for some q0. Iff =P�2� 
� � is the de
omposition of f into the 
orresponding wavelet basis,we also have the norm equivalen
ekfkBsp;q � k�2sj2d( 12� 1p )jk(
�)�2�jk�j��1 k`q ;under the same assumptions.



Se
tion 1.5. Wavelets & fun
tional spa
es 331.5.3 Chara
terization of negative smoothnessFor s < 0, Besov spa
es are usually de�ned by duality for p; q � 1:B�sp0;q0 := (Bsp;q)�; (1.5.9)with 1=p + 1=p0 = 1 and 1=q + 1=q0 = 1. The 
hara
terization of su
h dualspa
es relies on the 
hara
terization of the 
orresponding primal spa
e by thedual multis
ale de
omposition:Theorem 1.5.6: Assuming that the dual proje
tors are su
h thatkfkBsp;q � kP �0 fkLp + k(2sjkQ�jfkLp)j�0k`q (1.5.10)for some s > 0 and p; q � 1, we then havekfkB�sp0;q0 � kP0fkLp0 + k(2�sjkQjfkLp0 )j�0k`q0 (1.5.11)with 1=p+ 1=p0 = 1. We also have the norm equivalen
ekfkB�sp0;q0 � k(2�sj2d(1=2�1=p0)jk(
�)�2�jk`p0 )j��1k`q0 ; (1.5.12)if f =P�2� 
� �.1.5.4 The Hilbert 
aseIn the parti
ular 
ase of Sobolev spa
es, we have thus proved the norm equiva-len
e for a regularity index whi
h is either stri
tly positive or stri
tly negative:kfk2Hs � kP0fk2L2 +Xj�0 22jskQjfk2L2 �X�2� 22j�jsj
�j2: (1.5.13)The above equivalen
e for s = 0, whi
h 
orresponds to L2, means that f �g�2�,and by duality f ~ �g�2�, are Riesz bases for L2:kfkL2 'X�2� j
�j2 'X�2� j~
�j2 (1.5.14)with ~
� = (f; ~ �). Di�erent methods exist to prove norm equivalen
e (1.5.14):by using for example interpolation theory [27℄, or stable multis
ale transfor-mations [38℄.
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terization of Lp spa
esWe know that L2 identi�es with B02;2. By using elementary interpolation prop-erties of weighted `p spa
es [27℄, one obtains the norm equivalen
ekfkB0p;q � k(2d(1=2�1=p)jk(
�)�2�jk`p)j��1k`q ; (1.5.15)provided that the wavelet basis allows to 
hara
terize B"p;q1 and B�"p;q2 for some� > 0 and q1; q2 > 0.However we 
annot identify Lp with B0p;q, for any q > 0, if p 6= 2. This re
e
tsthe fa
t that Lp spa
es do not belong to the s
ale of Besov spa
es when p 6= 2.Con
erning su
h Lp spa
es, we 
an formulate two basi
 questions:1. does the wavelet expansion of an arbitrary fun
tion f 2 Lp 
onvergeun
onditionally in Lp?2. is there a simple 
hara
terization of Lp by the size of the wavelet 
oeÆ-
ients?The answer is negative for L1, sin
e it is not separable, and for L1, whi
h isknown to possess no un
onditional basis. For the 
ase 1 < p <1, a positiveanswer to the �rst question is provided by the real value theory developed byCalderon and Zygmund in order to study the 
ontinuity properties of opera-tors.Finally the 
hara
terization of Lp norms from the size properties of the wavelet
oeÆ
ients is also possible for 1 < p < 1, by means of a square fun
tion,de�ned for f =P�2� 
� � bySf(x) = [X�2� j
�j2j �(x)j2℄1=2: (1.5.16)Clearly we have kfkL2 � kSfkL2. Moreover, using the 
lassi
al Khin
hineinequality [76℄ allows to prove [27℄ the following norm equivalen
e:kfkLp � kSfkLp (1.5.17)for 1 < p <1.1.5.6 Bounded domains and boundary 
onditionsIt is possible to extend the results of previous se
tions, by 
hara
terizing fun
-tions spa
es related to a bounded domain 
 � R , with pres
ribed boundary
onditions, in terms of their multis
ale de
omposition. Following [27℄ we �x



Se
tion 1.5. Wavelets & fun
tional spa
es 35some general assumptions on our domain: 
 should have a simple geometry,expressed by a 
onformal partition
 = [ni=1Si;into simpli
ial subdomains: ea
h Si is the image of the unit simplexS := f0 � x1 + : : :+ xd � 1g;by an aÆne transformation. By \
onformal" we mean that a fa
e of an Siis either part of the boundary � or 
oin
ides with a fa
e of another Sj. Wealso assume that 
 is 
onne
ted in the sense that for all j; l 2 f1; : : : ; ng thereexists a sequen
e i0; : : : ; im, su
h that i0 = j and im = l and su
h that Sikand Sik+1 have a 
ommon fa
e. Clearly, polygons and polyedrons fall in this
ategory. More general 
urved domains or manifolds are also 
on
erned here,provided that they 
an be smoothly parametrized by su
h a simple referen
edomains.We denote by C1(�; m) the spa
e of smooth fun
tions de�ned on 
 whi
h van-ish at order m on �. This means that f 2 C1(�; m) if and only if f 2 C1(
)and jf(x)j � C[dist(x;�)℄m+1. We then de�ne the spa
es W s;p(�; m)(resp.Bsp;q(�; m)) as the 
losure of C1(�; m) in W s;p(resp. Bsp;q). We have thefollowing result [27℄.Theorem 1.5.7: Assume that ' 2 Lr and ~' 2 Lr0 for some r 2 [1;1℄,1=r + 1=r0 = 1, or that ' 2 C0 and ~' is a Radon measure, in whi
h 
ase weset r = 1. Also assume that Vj reprodu
es polynomials of degree n � 1 with
atness m at the boundary and that ' 2 Bsp;q0. Then for 0 < p � r, one hasthe norm equivalen
ekfkBtp;q � kP0fkLp + k(2tjkQjfkLp)j�0k`q ; (1.5.18)for all f 2 Btp;q(�; m) with t > 0 su
h that d(1=p�1=r) < t < min(s; n) and t�1=p is not an integer among 0; : : : ; m. If f =P�2� 
� � is the de
ompositionof f into the 
orresponding wavelet basis, we also have the norm equivalen
ekfkBsp;q � k�2sj2d( 12� 1p )jk(
�)�2�jk�j��1 k`q ;under the same assumptions.Finally we note [27℄ that also the 
hara
terizations of negative smoothness andLp spa
es extends to the type of domains that we are 
onsidering here.
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Chapter 2 NONLINEAR WAVELETAPPROXIMATION
"Well!" said Gandalf at last. "What are you thinking about? Have youde
ided what to do?". "I suppose I must keep the Ring and guard it, at leastfor the present, whatever it may do to me" answered Frodo. "But I feel verysmall, and very uprooted, and well { desperate. The Enemy is so strong andterrible".In the bla
k abyss there appeared a single Eye that slowly grew, until it �llednearly all the Mirror. The Eye was rimmed with �re, but was itself glazed,yellow as a 
at's, wat
hful and intent, and the bla
k slit of its pupil opened ona pit, a window into nothing. (J.R.R. Tolkien, The Fellowship of the Ring)Wavelet bases allow an eÆ
ient representation to 
hara
terise isolated sin-gularities of fun
tions, thanks to a parti
ularly good lo
ation both in spa
e andfrequen
y of ea
h element of the basis. This amounts to say that the de
om-position of a fun
tion with isolated singularities is la
unary, in the sense thatvery few 
oeÆ
ients of its wavelet de
omposition are non negligible. Then,given su
h a fun
tion, a simple strategy for building a 
ompressed approx-imation is possible by getting rid of the 
oeÆ
ients that are smaller thana pres
ribed threshold, or equivalently by 
hoosing the N largest, in abso-lute value, 
oeÆ
ients. In other words for fun
tions whi
h are not uniformlyregular, possibly better approximations are obtained by 
hoosing the approx-imation spa
e depending on the fun
tion itself. This means the we look for aspa
e VE := Spanf � : � 2 Eg, where E = E(f) � � is a �nite subset ofindi
es whi
h depends on the fun
tion f itself, and for an approximation ~f tof belonging to VE. Typi
ally E 
ould result to be the union of two subsets ofindexes: the �rst allowing a 
oarse approximation of f and the se
ond aimingto resolve the lo
al singularities of f . If the target fun
tion f is smooth ona region we 
an use a 
ourse resolution on that region, by putting terms in37



38 Nonlinear wavelet approximation Chapter 2the approximation 
orresponding to low frequen
y-terms. On regions wherethe target fun
tion is not smooth we use higher resolution, by taking in theapproximation more wavelet fun
tions 
orresponding to higher-frequen
ies.The questions that arise from these observations are:(i) How does one pra
ti
ally build the set E(f) and the approximation ~f?(ii) Is there a pre
ise 
hara
terization of the fun
tions that 
an be approxi-mated with a given rate of approximation, by this adaptive strategy?Let us introdu
e the spa
e�N = fX�2E 
� � : #(E) � Ng; (2.0.1)of all possible N -term 
ombinations of wavelets, and the error of best N -termapproximation in some norm k � kX de�ned bydistX(f;�N ) = infE��;#(E)�N inf(
�)�2E kf �X�2E 
� �kX : (2.0.2)It is well understood that �N is not a linear spa
e: if f and g are in �N we
an only 
on
lude that f + g 2 �2NSuppose now one has a

ess to the wavelet expansion f = P�2� 
� � ofthe fun
tion f to be approximated: a natural N -term approximation in X isprovided by the 
hoi
e fN = X�2EN 
� �; (2.0.3)where EN = EN (f;X) is the set of indi
es 
orresponding to the N largest
ontributions k
� �kX . Then, we shall see that for several interesting 
hoi
eof the spa
e X, we have kf � fNkX . distX(f;�N); (2.0.4)i.e. a simple thresholding of the largest 
ontributions in the wavelet de
om-position provides a near optimal N -term approximation.2.1 Nonlinear approximation in L2Let us 
onsider for the moment N -term approximation in the L2-norm: we areinterested in the behaviour of distL2(f;�N) as N goes to in�nity, where �N isde�ned as above. In order to simplify this example, we assume that f �g�2�is an orthonormal basis for L2. Thus any f 2 L2 
an be de
omposed intof =X�2� 
� �; 
� = (f;  �);



Se
tion 2.1. Nonlinear approximation in L2 39and we 
an de�ne the set �N = �N(f) � � of the N largest 
oeÆ
ients of f ,i.e. su
h that #(�N ) = N and� 2 �N ; �0 =2 �N ) j
�0j � j
�j: (2.1.1)If the modulus of several 
oeÆ
ients of f take the same value, we simplytake for �N any of the sets of 
ardinality N that satis�es 2.1.1. From theorthonormality of the basis, we 
learly havedistL2(f;�N ) = kf �X� 
� �kL2 = 0�X�=2�N j
�j21A1=2 : (2.1.2)Let us now 
onsider the spa
es Bsq;q, where s > 0 and q is su
h that 1=q =1=2 + s=d. We assume here that Bsq;q is 
hara
terized by (4.2.4):kfkBsp;q � k�2sj2d( 12� 1p )jk(
�)�2�jk�j k`q :For su
h indi
es, we note that this equivalen
e 
an be simpli�edkfkBsq;q � k(
�)�2�k`q : (2.1.3)A �rst immediate 
onsequen
e of (2.1.3) is the embedding of Bsq;q in L2, sin
e`q is trivially embedded in `2. Note that that su
h an embedding is not 
om-pa
t: the 
anoni
al sequen
e (sn)n�0 = ((Æn;k)k�0)n�0 is uniformly bounded in`q but does not 
ontain any subsequen
e that 
onverges in `2.In order to 
hara
terize Besov spa
es in terms of the L2-error of nonlinearwavelet approximation, we follow the same strategy as in the linear 
ontextand we try to obtain three ingredients: a dire
t estimate, an inverse estimateand a result of interpolation theory.If we now de�ne by (
n)n�1 any rearrangement of the 
oeÆ
ients (
�)�2�with de
reasing moduli, i.e. su
h that j
n+1j � j
nj, we also havenj
njq �Xk�1 j
kjq � kfkqBsq;q ; (2.1.4)whi
h yields j
nj . kfkBsq;qn�1=q: (2.1.5)
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reasing rearrangement 
n to be su
h that f
n : n � Ng =f
� : � 2 �Ng, it follows that we havedistL2(f;�N) = kf � X�2�N 
� �kL2=  Xn>N j
nj2!1=2. N1=2�1=qkfkqBsq;q :We thus have obtained a Ja
kson-type estimatedistL2(f;�N ) . N�s=dkfkqBsq;q ; (2.1.6)with respe
t to the non linear spa
es �N .On the other hand, if f 2 �N , we also have by H�older inequalitykfkBsq;q . k(
�)�2�k`q � N1=q�1=2k(
�)�2�k`2 = N s=dkfkL2; (2.1.7)i.e. a Bernstein-type estimate.The equivalen
e (2.1.3) also shows that for 0 < t < s and 1=r = 1=2+ t=d, wehave the interpolation identityBtr;r = [L2; Bsq;q℄�;r; � = t=s; (2.1.8)whi
h is a simple re-expression of [`2; `q℄�;r = `r.Now if we were in the linear 
ontext we 
ould 
hara
terize fun
tions spa
esby the error of linear approximation. It turns out that a similar result asin linear 
ase also holds in the present nonlinear 
ontext using the followingTheorem [27℄.Theorem 2.1.1: Assume that X and Y are quasi-normed spa
es and thatSj; j � 0, is a sequen
e of non linear approximation spa
esSj � Sj+1 � : : : � Y � X; (2.1.9)su
h that for some m > 0, one has a Ja
kson type estimatedistX(f; Sj) = infg2Sj kf � gk . 2�mjkfkY ; (2.1.10)and a Bernstein-type estimatekfkY . 2mjkfkX if f 2 Sj: (2.1.11)



Se
tion 2.2. Nonlinear approximation in Bsp;p 41Moreover assume that there exists a �xed integer a su
h thatSj + Sj � Sj+a; j � 0: (2.1.12)Then, for t 2℄0; m[, one has the norm equivalen
ek(2jtK(f; 2�mj))j�0k`q � kfkX + k(2jtdistX(f; Sj))j�0k`q ; (2.1.13)and thus [X; Y ℄�;q = Atq(X) for t = �m.From the monotoni
ity of the sequen
e distL2(f;�N ), we have the equivalen
eXj�0 [2jtdistL2(f; Sj)℄q �XN�1N�1[N t=ddistL2(f;�N)℄q: (2.1.14)The �niteness of the above quantities for q <1 is a slightly stronger propertythan distL2(f;�N ) . N�t=d whi
h was initially obtained. A

ording to theabove theorem, with X = L2 and Y = Bsq;q, this last property 
hara
terizesthe intermediate spa
e [L2; Bsq;q℄�;1 = At2;1; (2.1.15)with t = �s, whi
h 
annot be thought as a Besov spa
e. One 
an 
he
k thatthis spa
e is also 
hara
terized by the property that (
�)�2� belongs to theweak spa
e `rw, i.e. #f� 2 � : j
�j � "g � C"�t: (2.1.16)Hen
e the property f 2 Btr;r, 1=r = t=d + 1=2 is almost equivalent to therate distL2(f;�N ) . N�t=d, while the exa
t 
hara
terization passes throughthe stronger propertyXN�1N�1[N t=ddistL2(f;�N )℄r <1;or the weak spa
e `rw.2.2 Nonlinear approximation in Bsp;pIt is not diÆ
ult to extend the above results to the 
ase where the erroris measured in more general Besov spa
e of the type Bsp;p. Following [27℄we 
an
el the orthonormality assumption whi
h is irrelevant at this stage ofgenerality and we prove the following result.



42 Nonlinear wavelet approximation Chapter 2Lemma 2.2.1: Let assume that Bsp;p admits a wavelet 
hara
terization of thetype (4.2.4). If f =P�2� 
� �, thenkf � X�2�N 
� �kBsp;p . distBsp;p(f;�N); (2.2.1)where �N = �N(f; Bsp;p) is the set of the indi
es 
orresponding to the N largest
ontributions k
� �kBsp;p or equivalently the N largest 2(s+d=2�d=p)j�jj
�j.Proof: [27℄ The norm equivalen
e (4.2.4) shows that k �kBsp;p � 2(s+d=2�d=p)j�j.It 
an thus be reformulated askfkBsp;p � k(k
� �kBsp;p)�2�k`p: (2.2.2)Clearly the N -term approximation P�2�N 
� � minimizes the distan
e be-tween f and �N when measured in this equivalent norm for Bsp;p. It is thus anear minimizer for the Bsp;p norm in the sense of (2.2.1). 2Now we are ready to state and prove [27℄ the following result dealing withthe 
hara
terization of Besov spa
es Btq;q, with 1=q = t=d + 1=2 in terms ofthe nonlinear approximation error measured in the norm of Bsp;p, with 1=p =s=d+ 1=2Theorem 2.2.1: Assume that the spa
es Btq;q, t � s = d(1=q � 1=p) admit awavelet 
hara
terization of the type (4.2.4) for t 2 [s; s0℄, s0 > s. Then fort 2℄s; s0[; t� s = d(1=q � 1=p), we have the norm equivalen
ekfkBtq;q � kfkBsp;p + k(2j(t�s)distBsp;p(f; Sj))j�0k`q : (2.2.3)Proof: [27℄ If t > s and t� s = d=q � d=p, the norm equivalen
e (4.2.4) 
anbe rewritten as kfkBtq;q � k(k
� �kBsp;p)�2�k`q ; (2.2.4)where 
� are the wavelet 
oeÆ
ients of f . We 
an then pro
eed in a similarway as in the parti
ular 
ase of approximation in L2. Denoting by ("n)n�1the de
reasing rearrangement of the sequen
e (k
� �kBsp;p)�2�, we remark thatsin
e n"qn �Xk�1 "qk . kfkqBtq;q ; (2.2.5)we have the estimate "n . n�1=qkfkBtq;q : (2.2.6)



Se
tion 2.3. Nonlinear approximation in Lp; 1 < p <1 43Denoting by �N a set of indi
es de�ned as above, we obtaindistBsp;p(f;�N) � kf � X�2�N 
� �kBsp;p. (Xn�N "pn)1=p. N1=p�1=qkfkBtq;q :We have thus established the Ja
kson type estimatedistBsp;p(f;�N) � N�(t�s)=dkfkBtq;q : (2.2.7)If f 2 �N , then using H�older inequality and (2.2.4) yieldskfkBtq;q . N1=q�1=pk(k
� �kBsp;p)�2�k`p = N (t�s)=dkfkBsp;p; (2.2.8)i.e. the 
orresponding Bernstein-type estimate.Finally it remains to observe that Besov spa
es Btq;q, t� s = d=q� d=p areinterpolation spa
es: for s < t < s0, t� s = d=q� d=p and s0� s = d=p0� d=p,we have the interpolation identityBtq;q = [Bsp;p; Bs0p0;p0℄�;q; � = (t� s)=(s0 � s); (2.2.9)whi
h is a re-expression of [`p; `p0℄�;q = `q, with 1=p = s=d + 1=2 and 1=p0 =s0=d+ 1=2:By Theorem (2.1.1), with X = Bsp;p and Y = Btq;q, we thus obtained the normequivalen
e (2.2.3). 22.2.1 Linear versus NonlinearLet us 
onsider (2.2.7). The analog linear result (1.3.13) tells us that thesame error rate O(N�(t�s)=d) in Bsp;p is a
hieved by a linear method (i.e. withN = Nj = dim(Vj)) for fun
tions in Btp;p, whi
h is a smaller spa
e than Btq;q.It should be noted that, as t be
omes large, the fun
tions in the spa
e Btp;p be-
ome smooth in the 
lassi
al sense, while Btq;q might still 
ontain dis
ontinuousfun
tions.2.3 Nonlinear approximation in Lp; 1 < p <1It is important to note that the result of previous se
tion are easy to prove,due to the simple link existing between Besov spa
es and `p spa
es through



44 Nonlinear wavelet approximation Chapter 2wavelet de
omposition. The study of non linear approximation in Lp norm ismore diÆ
ult sin
e we 
annot identify Lp to a B0p;p for p 6= 2. Anyway swit
hingfrom B0p;p to Lp does not seriously a�e
t the results of N -terms approximationfor 1 < p <1.Following [27℄ we �rst re
all two lemmas, due to Temlyakov [77℄, that allowto estimate the Lp norm of a linear 
ombination of wavelets a

ording to thesize of the 
oeÆ
ients:Lemma 2.3.1: Let 1 < p <1 and f �g�2� a wavelet basis 
onstru
ted froms
aling fun
tions in Lp. If E is a �nite subset of � of 
ardinality #(E) <1,then kX�2E 
� �kLp � C#(E)1=p sup� k
� �kLp; (2.3.1)where C is independent of #(E).Lemma 2.3.2: Let 1 < p < 1 and f �g�2� (resp. f � �g�2�) a (resp. dual)wavelet basis 
onstru
ted from s
aling fun
tions in Lp (resp. in Lp0, with 1=p0+1=p = 1). If E is a �nite subset of � of 
ardinality #(E) <1, thenkX�2E 
� �kLp � C#(E)1=p inf� k
� �kLp; (2.3.2)where C is independent of #(E).Using the above two Lemmas it is possible to prove [77℄ that a near-best N -term approximation in Lp 
an be a
hieved by a simple thresholding pro
edure:kf � X�2�N 
� �kLp . distLp(f;�N);where �N is the set of indi
es 
orresponding to the N largest 
ontributionsk
� �kLp.2.3.1 Ja
kson and Bernstein result in Lp, 1 < p <1Now we prove [27℄ Ja
kson and Bernstein estimate for N -term approximationin Lp.Theorem 2.3.1: Let 1 < p < 1 and f �g�2� a wavelet basis 
onstru
tedfrom s
aling fun
tions in Lp. Assuming that the spa
e Bsq;q, 1=q = 1=p + s=dadmits a wavelet 
hara
terization of the type (4.2.4), we have the Ja
ksonestimate distLp(f;�N ) . N�s=dkfkBsq;q ; (2.3.3)and for f 2 �N , the Bernstein estimatekfkBsq;q . N s=dkfkLp: (2.3.4)



Se
tion 2.3. Nonlinear approximation in Lp; 1 < p <1 45Proof: [27℄ Let f 2 Bsq;q. We remark that the norm equivalen
e (4.2.4) alsowrites kfkBsq;q � k(k
� �kLp)�2�k`q : (2.3.5)In parti
ular, we have#f� : k
� �kLp � "g . "�qkfkqBsq;q : (2.3.6)It follows that there exists a 
onstant C > 0 (depending on the 
onstant inthe equivalen
e (2.3.5)), su
h that if we de�neAj = f� : C2�j=qkfkBsq;q � k
� �kLp � C2�(j�1)=qkfkBsq;qg; (2.3.7)we then have #(Aj) � 2j: (2.3.8)From (2.3.1) we 
an evaluate the Lp norm of TAjf =P�2Aj 
� � bykTAjkLp . 2�j=qkfkBsq;q#(Aj)1=p � 2j(1=p�1=q)kfkBsq;q : (2.3.9)Now de�ne Bj = [j�1l=0Al. By (2.3.8), we have #(Bj) � 2j. For Sj := �N , wethus have distLp(f; Sj) � kt� TBjfkLp� Xl�j kTAlfkLp. Xl�j 2l(1=p�1=q)kfkBsq;q. 2j(1=p�1=q)kfkBsq;q = 2�js=dkfkBsq;q :By the monotoni
ity of distLp(f; SN), this implies the dire
t estimate (2.3.3)for all N .In order to prove the Bernstein estimate, we distinguish two 
ases: p � 2and p � 2.If p � 2, we have kfkB0p;p � k(k
� �kLp)�2�k`p . kfkLp: (2.3.10)One way of 
he
king (2.3.10) is to use an interpolation argument: the propertyholds when p = 2 for whi
h one a
tually has the equivalen
e kfkB02;2 � kfkL2and p =1 sin
ek
� �kL1 . 2j�jd=2j
�j = 2j�jd=2j(f; ~ �)j . kfkL1: (2.3.11)



46 Nonlinear wavelet approximation Chapter 2In the 
ase where p � 2, let f =P�2E 
� � 2 �N . We then estimate kfkBsq;qas follows: kfkBsq;q . X�2E k
� �kqLp= X�2E j
�jqk �kpLpk �kq�pLp. Z
X�2E j
�jqj �jp2d(1=2�1=p)(q�p)j�j. Z
X�2E j
�jqj �jp[2d(1=p�1=2)j�jj �j℄p�q. Z
[Sf(x))℄qRE(x)dx;where we applied H�older's inequality on sequen
es to obtain the last line. HereSf(x) is the square fun
tion and RE(x) 
an be estimated as follows:RE(x) = �X�2E[2d(1=p�1=2)j�jj �(x)j℄2(p�q)=(2�q)�(2�q)=2. � X�2E; �(x)6=0 22dj�j(p�q)=(2p�qp)�(2�q)=2. 2j(x)d(1�q=p);where j(x) = maxfj � �1 : x 2 supp( �); for some � 2 Ejg. UsingH�older's inequality, we thus obtainkfkqBsq;q . kSfkq=pLp (Z
 2j(x)ddx)1�q=p. kfkLp[Xj��1#(
j)2jd℄1�q=p. kfkLp[Xj��1Nj℄1�q=p= N1�q=pkfkLp;where 
j := fx 2 
 : j(x) = jg. 22.3.2 The main resultBy using Theorem 2.3.1 and interpolation properties for the Asp;r spa
es andfor the Besov spa
es Bsq;q, 1=q = 1=p + s=d, it is possible to prove [27℄ theanalog of the Theorem 2.2.1 for Besov spa
es Bsq;q, with s < 1:



Se
tion 2.4. Nonlinear approximation of sequen
es 47Theorem 2.3.2: Let 1 < p < 1 and f �g�2� a wavelet basis 
onstru
tedfrom s
aling fun
tions in Lp. Assuming that for 0 < s < t the spa
e Bsq;q,1=q = 1=p + s=d admits a wavelet 
hara
terization of the type (4.2.4), thenone also has the norm equivalen
ekfkBsq;q � kfkLp + k(2jsdistL2(f; Sj))j�0k`q : (2.3.12)Remark 2.3.1: We refer to [27℄ and referen
es therein for the 
ases p � 1and p =1 whi
h are not 
overed by the results of this se
tion.2.4 Nonlinear approximation of sequen
esIn this se
tion we re-obtain expli
itly a result of nonlinear approximation inthe Sobolev spa
e Hs, by 
ombining nonlinear approximation of sequen
es andthe norm equivalen
es in terms of the summability properties of the wavelet
oeÆ
ients.We saw that in nonlinear approximation in a wavelet framework, a fun
-tion u 2 L2(
), whose wavelet de
omposition is u =P� u� �, 
an be approx-imated by a la
unary series; that is by an approximation v to u, belonging tothe non linear spa
e�N = fv =X�2� v� � : v = fv�g�2� 2 �Ng; (2.4.1)
ontaining all the fun
tions of L2(
), whose wavelet 
oeÆ
ients belong to theset �N = fv 2 `2(�) : #f� : v� 6= 0g � Ngof sequen
es with at most N elements di�erent from zero. The set �N 
ontainsthe fun
tions of L2(
), whi
h 
an be expressed as a linear 
ombination of atmost N wavelets. A nonlinear proje
torPN : L2(
)! �N
an be built as follows: given u =P� u� �, let us sort the sequen
e fju�jg�2�in de
reasing order. We denote fju�(k)jgk2N the 
oeÆ
ient of rank k:ju�(k)j � ju�(k+1)j; with k > 0:Hen
e the image PN (u) is de�ned by:PN (u) = NXn=1 u�(n) �(n);



48 Nonlinear wavelet approximation Chapter 2that is only the N greatest (in absolute value) 
oeÆ
ients of u are retained.By abuse of notation we will also indi
ate byPN : `2 ! �Nthe operator asso
iating to the sequen
e u = fu�g, the 
oeÆ
ients of thefun
tion PN (P� u� �). The a

ura
y of the 
orresponding approximation isdire
tly related to `�w regularity of the sequen
e of 
oeÆ
ients of u, as statedby the following theorem [47℄, [48℄:Theorem 2.4.1: Let u = P�2� u� �. If u = fu�g� 2 `�w, with � su
h that0 < � < 2, thenku� PNuk`2 . infw2�N ku� wk`2 . N�( 1�� 12 )kuk`� ;where the impli
it 
onstants in the bounds depend only on � .Proof: We sket
h the proof. We have#f� 2 � : j
�j � "g �M"�� :Let �j := f� : 2�j < j
�j < 2�j+1g. Then for ea
h k = 1; 2; : : :, we havekXj=�1#�j � CM2k� (2.4.2)with C depending only on � .Let Sj := P�2�j 
� � and Tk := Pkj=�1 Sj. Then Tk 2 �N with N =CM2k� . We have kf � TkkL2 � 1Xj=k+1kSjkL2 : (2.4.3)We �x j > k and estimate kSjkL2. Sin
e j
�j � 2�j+1 for all � 2 �j, wehave from Lemma 2.3.1 and (2.4.2),kSjkL2 � C2�j#�1=2j � CM1=22j(�=2�1):We therefore 
on
lude from (2.4.3) thatkf � TkkL2 � CM1=2 1Xj=k+1 2j(�=2�1) � CM(M1=�2k)�=2�1;be
ause �=2� 1 < 0. In other words for N ' M2k� , we haveinfw2�N ku� wk`2 � CMN1=2�1=� :



Se
tion 2.4. Nonlinear approximation of sequen
es 49To 
on
lude it is suÆ
ient to re
all the near optimality of the nonlinear pro-je
tor PN in L2: ku� PNuk`2 . infw2�N ku� wk`2: 2In parti
ular, as `� � `�w, if � is su
h that 1� = rd + 12 , using norm equivalen
e(4.2.4), we obtain kX� u� �kBr�;� (
) ' kuk`� (2.4.4)and from Theorem 2.4.1 we re
over the above result of nonlinear approximationin L2: if u belongs to Br�;� (
), with � su
h that 1� = rd + 12 , theninfw2�N ku� wkL2(
) . ku� PNukL2(
) . N�( 1�� 12 )kukBs�;�(
):In other words, on
e we normalise in L2(
) the wavelet basis f �g, the naturalfun
tional setting of nonlinear approximation in L2(
) is the s
ale of Besovspa
es Br�;� (
).2.4.1 Nonlinear approximation in HsLet us now 
onsider a res
aled version f � �g� of the wavelet basis f �g�, where� � = ��js �, for � 2 �j. If � is su
h that 1� = rd + 12 , from norm equivalen
e(4.2.4) we obtain: kX� u� � �kBr+s�;� (
) ' kuk`� : (2.4.5)Applying now Theorem 2.4.1 and norm equivalen
e (1.5.13) for Sobolev spa
esto the normalised sequen
e u, we obtain the following result of non linearapproximation in Hs(
):Corollary 2.4.1: Let u 2 Bs+r�;� (
), with � su
h that 1=� = r=d+ 1=2, thenku� PNukHs(
) . infw2�N ku� wkHs(
) . N�( 1�� 12 )kukBs+r�;� (
);where the impli
it 
onstants in the bounds depend only on � .That is when we 
onsider nonlinear approximation in Hs(
) the natural fun
-tional setting is the s
ale of Besov spa
es Br+s�;� (
), where � is de�ned by therelation 1� = rd + 12 .



50 Nonlinear wavelet approximation Chapter 22.5 Towards adaptive wavelet methodsWavelet bases are being in
reasingly used in the numeri
al solution of partialdi�erential and integral equations. There are many aspe
ts in a dis
retizationpro
edure for su
h equations that 
an bene�t from the features of these bases.Wavelets share with other multilevel methods the 
apability of easily pre
ondi-tioning the dis
rete realizations of symmetri
 positive de�nite operators. Moretypi
al of wavelets is their orthogonality to 
ertain 
lasses of smooth fun
tions(e.g. polynomials), a feature that 
an be exploited in the 
ompression of densematri
es and, in a more general 
ontext, in the design of adaptive dis
retiza-tion strategies. The �nite-dimensional spa
e, whi
h is used in a Galerkin-typeapproximation, is adaptively 
onstru
ted by in
luding in it pre
isely thosewavelet basis fun
tions that have the potential of representing the most sig-ni�
ant stru
tures of the solution. From this point of view, adaptive waveletmethods 
an be viewed as meshless methods or spa
e re�nement methods, witha highly 
exible me
hanism for adding and removing degrees of freedom. Non-linear approximation provides a natural ben
hmark for an adaptive s
heme:if k � kX is the norm where we measure the error between the solution u of aPDE and its numeri
al approximation and if it holds ku� uNkX . N�s for afamily of N -term wavelet approximations uN 2 �N , then an optimal adaptives
heme should provide N -terms approximate solutions ~uN 2 �N , su
h thatone also has ku� ~uNkX . N�s.2.5.1 Wavelet pre
onditioningOne of the interest of multis
ale dis
retizations is the possibility of pre
ondi-tioning large systems whi
h arise from ellipti
 operator equations. A generalsetting for su
h equations is the following: H is a Hilbert spa
e embedded inL2(
) and a(�; �) is a bilinear form on H �H su
h thata(u; u) � kuk2H: (2.5.1)Let H 0 be the dual spa
e of H. Given f 2 H 0, we sear
h for u 2 H su
h thata(u; v) = (f; v); for all v 2 H: (2.5.2)It is well known that from Lax-Milgram lemma, this problem has a uniquesolution. If we de�ne the operator A by(Au; v) = a(u; v); for all v 2 H;the equivalen
e (2.5.1) implies that A is an isomorphism from H to H 0, so thatu is also the unique solution in H ofAu = f: (2.5.3)



Se
tion 2.5. Towards adaptive wavelet methods 51If Vh is a subspa
e of H, the Galerkin approximation of u in Vh is 
lassi
allyde�ned by uh 2 Vh su
h thata(uh; vh) = (f; vh); for all vh 2 Vh: (2.5.4)If Vh is �nite dimensional, the approximated problem (2.5.4) amounts in solv-ing a linear system. Here we are interested in the situation where H isan L2 Sobolev spa
e: 
lassi
al instan
es are given by the Poisson equation��u = f with Diri
helet 
onditions, where H = H10 , or the Helmholtz equa-tion u��u = f , with Neumann boundary 
onditions, whereH = H1. For su
hequations it is known that the matri
es resulting from Galerkin dis
retizationsin the �nite element spa
es are ill-
onditioned, i.e. their 
onditions numbergrows like h�2s, where h is the mesh size and s is the order of the 
orrespondingSobolev spa
e H, where 2s is the order of the ellipti
 operator. We remarkthat ellipti
 equations involving integral operators of negative order also enterthe above 
lass of problems [41℄.The use of multilevel methods for pre
onditioning su
h matri
es is linkedto the possibility of 
hara
terizing the L2 Sobolev spa
e Hs (possibly withboundary 
onditions) by means of wavelet 
oeÆ
ients:kfk2Hs �X�2� 22sj�jj
�j2: (2.5.5)Let us 
onsider the Galerkin dis
retization (2.5.4) on a multiresolution approx-imation spa
e VJ � H, 
orresponding to a mesh size 2�J and we denote by uJthe 
orresponding solution. For the 
omputation of uJ we use the multis
alebasis f �gj�j<J and we obtain a systemAJUJ = FJ ; (2.5.6)where UJ is the 
oordinate ve
tor of uJ in the basis f �gj�j<J , FJ = f(f;  �)gj�j<Jand AJ = f(A �;  �)gj�j;j�j<J is the sti�ness matrix.A result relating the norm equivalen
e to wavelet pre
onditioning was �rstproposed in [59℄:Theorem 2.5.1: Consider the diagonal matrix DJ with (DJ)�;� = (22sj�jÆ�;�),where j�j; j�j < J . The two following statements are equivalent:(i) H is 
hara
terized by a norm equivalen
ekfk2H �X�2� 22sj�jj
�j2; (2.5.7)



52 Nonlinear wavelet approximation Chapter 2(ii) The 
ondition number K(D�1J AJ) = K((D�1=2J AJD�1=2) is bounded in-dependently of J .Proof: The property (ii) is equivalent to(DJU; U) � (AJU; U); (2.5.8)with 
onstants independent of the ve
tor U and the s
ale level J . From thede�nition of AJ , this 
an also be expressed bya(vJ ; vJ) � Xj�j<J 22sj�jj
�j2; (2.5.9)for all vJ = Pj�j<J 
� � in VJ . Sin
e a(u; u) � kuk2H, (2.5.9) is equivalentto (2:5:7) for all f 2 VJ . By density of the VJ multiresolution spa
es, this isequivalent to (2.5.7) for all f 2 H. 22.5.2 Compression of operatorsAnother advantage of the wavelet basis is the sparse stru
ture that results fromthe multis
ale dis
retization of most operators involved in partial di�erentialand integral equations and the good properties su
h operators exhibit whenapply on fun
tions that also have a sparse multis
ale representation. Givenan operator A a
ting on fun
tions de�ned on a domain 
 � R and a waveletbasis f �g�2�, we are interested in evaluating the entriesm�;� = (A �;  �): (2.5.10)In order to treat di�erent examples within a uni�ed framework [27℄, weshall now introdu
e general 
lasses of matri
es asso
iated to operators throughwavelet bases.De�nition Let s 2 R and �; � > 0. A matrix M belongs to the 
lass Ms�;�if and only if its entries satisfy the estimatejm�;�j � CM2s(j�j+j�j)2�(d=2+�)jj�j�j�jjd(�; �)�(d+�) (2.5.11)where d(�; �) := 1 + 2minfj�j;j�jgdist(supp( �); supp( �)). We denote by M�;�this 
lass when s = 0.The fa
tor 2s(j�j+j�j) des
ribes the growth or de
ay (depending on the sign ofs, hen
e depending on the order of the operator) of the entries of M along thediagonal, i.e. the multipli
ative e�e
t of the operator on the di�erent s
ales.The parameter s thus indi
ates the order of the operator: for instan
e s = 2if A = �



Se
tion 2.5. Towards adaptive wavelet methods 53Remark 2.5.1: Note that the diagonal bi-in�nite matrix Ds, with (Ds)�;� =2sj�jÆ�;� allows to renormalize M , in the sense that ~M = D�1s MD�1s satis�esthe estimate (2.5.11) with s = 0, i.e. belongs to the 
lass M�;�. Su
h arenormalization is exa
tly the pre
onditioning pro
ess on �nite matrix des
ribedin the previous se
tion.The fa
tor 2�jj�j�j�jj(d=2+�) des
ribes the de
ay of the entries away from thediagonal blo
ks 
orresponding to j�j = j�j. Finally the fa
tor (1 + d(�; �0))��des
ribes the de
ay of the entries away from the diagonal within ea
h blo
ks
orresponding to �xed values of j�j and j�j.A basi
 tool for the study of the 
lasses Ms�;� is the S
hur lemma that were
all below.Lemma 2.5.1: Let M = (m�;�)�;�2� be a matrix indexed by �. Assume thatthere exists a sequen
e of positive numbers (!�)�2� and a 
onstant C su
h thatX�2� !�jm�;�j+X�2� !�jm�;�j � C!� (2.5.12)for all � 2 �. Then M de�nes a bounded operator in `2(�) with kMk � C.A �rst appli
ation of the S
hur lemma is the following result [27℄.Theorem 2.5.2: If �; � > 0, then any M 2 M�;� de�nes a bounded operatorin `2(�). In turn, any matrix M 2 M�;� together with a Riesz basis ( �)� 2 �of L2 de�nes an L2 bounded operator A represented by M in this basis.Proof: [27℄ We shall use the S
hur Lemma with !� = 2�dj�j=2. From (2.5.11),we �rst obtain!�1� X�2� !�jm�;�j . 2dj�j=2X�2� 2�dj�j=22�(d=2+�)jj��j�jjd(�; �)�(d+�). 2dj�j=2Xj�0 2�dj=22�(d=2+�)jj�j�jj Xj�j2�j d(�; �)�(d+�):Sin
e � > 0 the last fa
tor Pj�j2�j d(�; �)�(d+�) is bounded by a uniform
onstant if j � j�j and by 2d(j�j�j) if j � j�j. Splitting the sum in j a

ordingto these two 
ases, we �nally obtain!�1� X�2� !�jm�;�j . Xj�0 2djj�j�jj=22�(d=2+�)jj�j�jj. 2Xl�0 2��l <1;whi
h shows that (2.5.12) holds with su
h weights. 2



54 Nonlinear wavelet approximation Chapter 2Let us now introdu
e the weighted spa
es`2t (�) := f(
�)�2� : k(
�)�2�k2̀2t :=X�2� 22tj�jj
�j2 <1g:We already noted that for M 2 Ms�;�, for s 6= 0, the pre
onditioned matrix~M = D�1s MD�1s ;with Ds = (2sj�jÆ�;�)�;� belongs to the 
lassM�;�. We remark that Ds de�nesan isomorphism from `2t to `2t+s. Combining these remarks with the aboveTheorem, we 
an des
ribe the a
tion of M = Ds ~MDs, as follows [27℄:Corollary 2.5.1: If �; � > 0, then any M 2 Ms�;� de�nes a bounded operatorfrom `2s to `2�s. In turn, any matrix M 2 Ms�;� together with a wavelet basis( �)� 2 � whi
h 
hara
terize Hs(
) and H�s(
) (possibly with boundary 
on-ditions) de�nes a bounded operator A from Hs(
) to H�s(
), represented byM in this basis.The next step is to show that the estimate (2.5.11) allows to 
ompress thematri
es in the 
lassMs�;� by dis
arding 
ertain entries. We �rst 
onsider the
ase s = 0 [27℄.Theorem 2.5.3: Let M�;� and t < inf(�=d; �=d). For all N � 0 one 
andis
ard the entries of M in su
h a way that the resulting matrix MN has Nnonzero entries per rows and 
olumns and satis�eskM �MNk . N�t; (2.5.13)in the operator norm `2(�).Proof: [27℄ We �rst trun
ate the matrix M in s
ale: for a given J > 0, wedis
ard m�;� if jj�j � j�jj � J . Denoting by AJ the resulting matrix, we 
anuse the same te
hnique as in the proof of the above Theorem (S
hur lemmawith weights 2dj�j=2) to measure the error kM �AJk in the operator norm. Bya very similar 
omputation, we obtainkM � AJk .Xl�J 2��l . 2��J :We next trun
ate AJ in spa
e, by preserving in ea
h remaining blo
k of AJthe entries m�;� su
h that d(�; �) � k(jj�j � j�jj) where the fun
tion k is tobe determined. We denote by BJ the resulting matrix. Using again the S
hur



Se
tion 2.5. Towards adaptive wavelet methods 55lemma in the same way as in the proof of the above Theorem, we evaluate theerror kAJ � BJk by the supremum in � of!�1� j�j+JXj=j�j�J X�2�j !�jbJ�;� �m�;�j;and we obtain an estimated 
ontribution of 2��J for ea
h term in j by takingk(l) = 2J�=�2l(1��=�). The total error is thus estimated bykM �BJk . J2��J ;with the number of nonzero entries per rows and 
olumns in BJ is estimatedby N(J) . PJl=0 k(l)d. In the 
ase where � > � (resp. � < �) this sum isbounded by the �rst term K(0)d = 2Jd�=� (resp. last term K(J) = 2dJ). Inthe 
ase � = �, we obtain N(J) . J2dJ . In all 
ases, it follows from theevaluation of N(J) and the error kM �BJk . J2��J thatkM � BJk . N(J)�t;if t is su
h that t < inff�=d; �=dg. Sin
e J ranges over all positive integers,this is enough to 
on
lude the proof. 2We 
an derive simple 
onsequen
es of this result 
on
erning the sparsityof the operators in the 
lasses Ms�;� by the same 
onsiderations as for thestudy of boundedness properties: for M 2 Ms�;�, we apply the 
ompressionpro
ess of the above Theorem to the pre
onditioned matrix ~M = D�1s MD�1s .Denoting by ~MN the 
ompressed version of the matrix ~M , we then de�neMN = Ds ~MNDs. This new matrix has also N entries per rows and 
olumnsand approximates M in the sense expressed by the following Corollary.Corollary 2.5.2: Let M�;� and t < inf(�=d; �=d). For all N � 0 one 
andis
ard the entries of M in su
h a way that the resulting matrix MN has Nnonzero entries per rows and 
olumns and satis�eskM �MNk . N�t; (2.5.14)in the norm of operators from `2s(�) to `2�s(�).The last result [27℄ 
on
erns the appli
ation of sparse matri
es of the typethat we have introdu
ed in this se
tion on sparse ve
tors, possibly resulting ofadaptive multis
ale dis
retizations for the solution of PDE's. In the 
ontextof nonlinear approximation theory, the sparsity of su
h a ve
tor is pre
iselydes
ribed by the rate of de
ay of the error ofN -term approximation: an in�nite



56 Nonlinear wavelet approximation Chapter 2ve
tor U has a degree of sparsity t > 0 in some metri
 X, if there exists asequen
e of ve
tors (UN )N�0 su
h that UN has N nonzero 
oordinates andsu
h that kU � UNkX . N�t: (2.5.15)In the 
ase where X = `2 the ve
tors UN are simply obtained by retaining theN largest 
oordinates of U and property (2.5.15) is equivalent to U 2 `pw with1=p = 1=2 + t.Theorem 2.5.4: The matri
es M 2 M�;� de�ne bounded operator in `2\ `pw,for 1=p = 1=2+t and t < minf�=d; �=dg. In other words a ve
tor U of sparsityin `2 is mapped by M onto a ve
tor V =MU with the same property.Proof: Following [27℄ we will dire
tly 
onstru
t an N -term approximationto V = MU from the N -term approximation of U . For j � 0 we denoteby Uj the ve
tor that 
onsists of the 2j largest 
oordinates of U . From theassumptions we know that kU � UjkX . 2�tj:Fixing r 2℄t;minf�=d; �=dg[, we 
an de�ne, a

ording to the above Theorem,trun
ated operators Mj su
h that Mj has at most 2(1�")j nonzero entries perrows and 
olumns with " > 0 andkM �Mjk . 2�rj:We de�ne an approximation to V =MU byVj := AjU0+Aj�1(U1�U0)+ : : :+A0(Uj�Uj�1) = AjU0+ jXl=1 Aj�l(Ul�Ul�1):It is possible to evaluate the number of nonzero entries of Vj byN(j) � 2(1�")j + jXl=1 2(1�")j�l2l�1 . 2j:Finally we 
an evaluate the error of approximation as follows.kV � Vjk = kM(U � Uj) + j�1Xl=0 (M �Ml)(Uj�l � Uj�l�1) + (M �Mj)U0k� kM(U � Uj)k+ j�1Xl=0 kM �MlkkUj�l � Uj�l�1k+ kM �MjkkU0k. 2�tj + 2�tj j�1Xl=0 2(t�r)l + 2�rj. 2�tj: (2.5.16)



Se
tion 2.5. Towards adaptive wavelet methods 57Sin
e j ranges over all possible integers, we have thus proved that V 2 `pw,with 1=p = 1=2 + t. 2We 
an again derive [27℄ an immediate Corollary.Corollary 2.5.3: Let M 2 Ms�;� and U a ve
tor of sparsity t in `2s withs < inff�=d; �=dg. Then V =MU has sparsity t in the dual spa
e `2�s.
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Chapter 3ADAPTIVE SCHEMES FORLINEAR EQUATIONS
And Minas Morgul answered. There was a 
are of livid lightnings: forks ofblue 
ame springing up from the tower and from the en
ir
ling hills into thesullen 
louds. The earth groaned; and out of the 
ity there 
ame a 
ry.(...)As the terrible 
ry ended, falling ba
k through a long si
kening wail tosilen
e, Frodo slowly raised his head. A
ross the narrow valley the walls ofthe evil 
ity stood, and its 
avernous gate, shaped like an open mouth withgleaming teeth, was gaping wide. And out of the gate an army 
ame. All thathost was 
lad in sable, dark as the night. Against the wan walls and theluminous pavement of the road Frodo 
ould see them, small bla
k �gures inrank upon rank, mar
hing swiftly and silently, passing outwards in an endlessstream. Before them went a great 
avalry of horsemen moving like orderedshadows, and at their head was one greater than all the rest: a Rider allbla
k, save that on his hooded head he had an helm like a 
rown that 
i
keredwith a perilous light.(...) Frodo waited, and as he waited, he felt, more urgentthan ever before, the 
ommand that he should put on the Ring. But he knewthat the Ring would only betray him, and that he had not, even if he put iton, the Power to fa
e the Morgul-king { not yet.(J.R.R. Tolkien, The Two Towers)3.1 Introdu
tionIn the study of numeri
al algorithms for the solution of PDE's, adaptive meth-ods are 
ommonly used when the solution u exhibits lo
alized singularities.Typi
ally su
h methods use informations at a given step to produ
e, for thenext iteration, a new approximation to u with a �ner resolution near the singu-larities. Adaptive pro
edures are parti
ular form of nonlinear approximationof the unknown solution u. The approximation spa
e in whi
h we look forthe numeri
al solution is not a linear spa
e, sin
e the degrees of freedom are61



62 Adaptive s
hemes for linear equations Chapter 3not 
hosen a priori, but depend on the solution u. In this 
ontext, what onewould like to do is to �x the number N of degrees of freedoms and to design analgorithm able to �nd the best possible approximation of the solution u amongall possible approximations (of a give type) with N degrees of freedoms, andthis, with a 
omputational 
ost growing only linearly with N .In the wavelet framework, thanks to nonlinear approximation te
hniques,it is possible to approximate a given fun
tion with an element of the nonlin-ear spa
e �N 
ontaining fun
tions, whose wavelet expansions have at most Nnon-vanishing 
oeÆ
ients. When the fun
tion to be approximated is known,it is easy to de�ne a nonlinear proje
tion PN whi
h allows to get, given u,the best N -terms wavelet approximation, by simply keeping the N biggest (inabsolute value) 
oeÆ
ient (properly res
aled, depending on the norm in whi
hthe approximation is measured).Unfortunately, in the 
ase we are interested in, the fun
tion to be approx-imated is not known. If we 
onsider for instan
e the problem of buildinga numeri
al s
heme to approximate the solution u to the partial di�erentialequation�div(aru) = f in 
 � Rd ; u = 0 on �
; (3.1.1)one possibility is to look for iterative approximation s
hemes in whi
h byde�nition the iterates belong to the nonlinear spa
e �N .On an abstra
t level, we write down a 
onvergent iterative s
heme forthe 
ontinuous problem, and then we for
e the iterate to belong to �N , bysimply proje
ting it onto su
h spa
e using the simple approximation strategyfor known fun
tions des
ribed above.On a pra
ti
al point of view, this is a
hieved by following the "new ap-proa
h" (see Introdu
tion):1. transform the given PDE into an equivalent in�nite linear system whoseunknown is the in�nite ve
tor of wavelet 
oeÆ
ients of the unknownsolution.2. write down a 
onvergent iterative s
heme for the in�nite linear system.3. at ea
h iteration approximate (possibly adaptively) the in�nite matrix-ve
tor multipli
ation by a �nite matrix-ve
tor, by performing a pre-vision step, aiming at individuating a priori �nite number of relevant
oeÆ
ients, whi
h will be possibly pi
ked up by the nonlinear proje
tionstep, while the remaining will be most 
ertainly dis
arded.



Se
tion 3.1. Introdu
tion 63Convergen
e of algorithms of this type strongly relies on a key feature ofwavelets, namely what is usually referred to as wavelet pre
onditioning (seeSe
tion 2.5.1): equation (3.1.1) 
an be rewritten in an equivalent form asin�nite system: Au = g; with A;A�1 2 L(`2; `2); (3.1.2)where u is the in�nite array of the 
oeÆ
ients u� of the unknown solutionu = P� u� � �, expressed with respe
t to the basis f � �g� obtain by suitablyrenormalizing the basis f �g�.Based on these ideas, we present a 
omputable s
heme, whi
h we proveto be 
onvergent to an approximate solution with almost the same approxi-mation rate as the one whi
h is a
hieved, (under the same Besov smoothnessassumptions) by the nonlinear approximation of a given fun
tion. In parti
-ular, as mentioned in the Introdu
tion, we deal dire
tly with the problem ofthe approximate appli
ation of a 
ertain 
lass of linear operators in wavelet
oordinates, providing an expli
it strategy.Let us for the moment assume that we have sele
ted two sequen
es Nn and �nN0 < N1 < � � �Nn1 < Nn2 < � � � < N�n = N�0 > �1 > � � � �n1 > �n2 > � � � > ��nWe are interested in s
hemes of the following type, where, by abuse of nota-tion, we will also denote by PN , the operator that asso
iates to the 
oeÆ
ientsof a fun
tion u, the ve
tor of 
oeÆ
ients of its nonlinear proje
tion PN (u):Nonlinear Ri
hardsonStep 1. Initialization: set u(0) = 0.Step 2. Until n � �n, repeatStep 2.1 Prevision: sele
t a �nite dimensional set V (n) � � su
h that, de-noted by Sn the linear subspa
e of `2 of the form Sn = fv 2`2 : v� = 0; � 62 V (n)g, we haveinfv2Sn ku(n) + �r(n) � vk`2 � C�n;where r(n) = g�Au(n) denotes the residual and where the 
onstantC depends only on initial data.



64 Adaptive s
hemes for linear equations Chapter 3Step 2.2 Compute an approximation~r(n) 2 fv = (v�)�2� 2 `2 : � 62 V (n) ) v� = 0gof the residual r(n), in su
h a way that kr(n) � ~r(n)k`2 � C�n.Step 2.3 Proje
tion: set u(n+1) = PNn(u(n) + �~r(n)):Step 2.4 Update: n + 1! nThe 
onstru
tion of a suitable set V (n), whi
h is possible thanks to the goodspa
e frequen
y lo
alization properties of wavelets, is a ne
essary step for analgorithm of this type to be pra
ti
ally implemented. Neverless we postponesu
h an issue and we �rst 
on
entrate on the study of the in
uen
e of thenonlinear proje
tion step in the Ri
hardson type algorithm.The outline is as follows: in se
tion 3.2 we re
all some useful results aboutwavelets and nonlinear approximation, in se
tion 3.3 we state the problem tosolve, in se
tion 3.4 we dis
uss a non-
omputable abstra
t s
heme to study thein
uen
e of the nonlinear proje
tor step and �nally in se
tion 3.6.3 we analyzethe Nonlinear Ri
hardson s
heme and the 
onstru
tion of the prevision set�(n).3.2 Notations and Preliminary resultsIn the following we will employ the notation A . B to indi
ate that thequantity A is bounded from above by a positive 
onstant times the quantityB, while A ' B will stand for A . B . A.For simpli
ity let us �x the following fun
tional setting: let 
 � R be abounded domain, and suppose we are given a Riesz basis f �g�2�, � = [1j=0�j,for L2(
), su
h that, for some parameter � > 1, the following norm equivalen
efor the Besov spa
es Bsp;q(
) holds for all s; p; q, 0 � s � S, 0 < p <1, q > 0:kX� u� �kqBsp;q(
) 'Xj �q(s+ d2� dp )j0�X�2�j ju�jp1Aq=p ; (3.2.1)The splitting of the index set � as � = [1j=0�j, 
orresponds to distinguish-ing fun
tions \living" at di�erent s
ales (� 2 �j $ (supp �) � 2�j). It is



Se
tion 3.2. Notations and Preliminary results 65beyond the goal of this paper to des
ribe how and under whi
h 
onditions on
 su
h bases f �g� are 
onstru
ted (see, among others, [24℄, [39℄).Sin
e Hs(
) = Bs2;2(
), from equivalen
e (3.2.1) we dedu
e that for all s,0 � s � S : kX� u� � �kHs(
) ' kuk`2; with � � = ��js �: (3.2.2)Moreover, when 
onsidering nonlinear approximation in Hs, the s
ale of Besovspa
es Br+s�;� (
) { where � = �(r) is de�ned by the relation 1� = rd + 12 { willnaturally appear. For these spa
es the norm equivalen
es in terms of wavelet
oeÆ
ients are quite simple; indeed using again equivalen
e (3.2.1), we obtain:kX� u� � �kBr+s�;� (
) ' kuk`� ; � 2 �j; with 1� = rd + 12 (3.2.3)where again � � = ��js �.In the following it will also be useful to 
onsider the spa
e of fun
tionswhose 
oeÆ
ients, with respe
t to the res
aled basis f � �g�, are in the weak{`�spa
e `�w, whi
h 
an be de�ned as the spa
e of sequen
es u = fu�g� for whi
hthere exists a 
onstant C su
h that#f� : ju�j � �g � C��� ; (3.2.4)the norm kuk�̀�w being de�ned as the smallest C whi
h veri�es relation (3.2.4).It is possible to prove that `� � `�w, whi
h implies that the 
oeÆ
ients fu�g�of a fun
tion u 2 Br+s�;� verify fu�g� 2 `�w.Let us now re
all some fa
ts about nonlinear wavelet approximation: thespa
e �N � V ,�N = fu =X� 
� � : 
 = f
�g�2� 2 �Ngwith �N = f
 2 `2(�) : #f� 2 � : 
� 6= 0g � Ng;is a nonlinear spa
e 
ontaining fun
tions in L2(
) whi
h 
an be represented asthe linear 
ombination of at most N elements of the basis f � �g�. A nonlinearproje
tor PN : L2(
)! �N 
an be de�ned as follows: given u =P� u� � �, letus introdu
e a de
reasing rearrangement fju�(n)jgn2N of the sequen
e fju�jg�2�,



66 Adaptive s
hemes for linear equations Chapter 3where the appli
ation n 2 N �! �(n) 2 � is bije
tive and veri�es n < m =)ju�(n)j � ju�(m)j; PN (u) is then de�ned by:PN (u) = NXn=1 u�(n) � �(n);that is only the N greatest (in absolute value) 
oeÆ
ients of u are retained.We re
all that by abuse of notation we will also indi
ate by PN : `2 ! �Nthe operator asso
iating to the sequen
e u the 
oeÆ
ients of the fun
tionPN (P� u� �). The a

ura
y of the 
orresponding approximation is dire
tlyrelated to `�w regularity of the sequen
e of 
oeÆ
ients of u, as stated by thefollowing theorem [47℄, [48℄.Theorem 3.2.1: Let u = P�2� u� � �, with � � = ��js �, s � S. If fu�g� 2`�w then ku� PNuk`2 . infw2�N ku� wk`2 . N�( 1�+ 12 )kuk`w�where the impli
it 
onstants in the bounds depend only on � .3.3 The ProblemLet us now 
onsider a linear operator A : Hs(
) ! H�s(
), 0 < s � S,(H�s(
) denoting here the dual of Hs(
)) and let the 
orresponding bilinearform a : Hs(
)�Hs(
)! R be de�ned as:a(u; v) :=< Au; v >; 8u; v 2 Hs(
);where < :; : > denotes the duality pairing between H�s and Hs. We assumethat the bilinear form a is 
ontinuous 
oer
ive, that is; 8u; v 2 Hs(
):a(u; v) �MkukHs(
)kvkHs(
); a(u; u) � �kuk2Hs(
):We 
onsider the following problem: given g 2 H�s(
), �nd u 2 Hs(
) su
hthat: Au = g: (3.3.1)Under our assumptions it is well known that for any g 2 H�s(
) equation(3.3.1) has a unique solution; this is also the unique solution of the equivalentvariational problem: �nd u 2 Hs su
h thata(u; v) =< g; v >; 8v 2 Hs(
): (3.3.2)



Se
tion 3.4. Nonlinear Ri
hardson I: the basi
 s
heme 673.4 Nonlinear Ri
hardson I: the basi
 s
hemeDepending on the regularity of the data and on the domain 
, the solution ofproblem (3.3.2) may be smooth, or it may present some singularity (see e.g.[66℄, [55℄, [61℄, [37℄). In the last 
ase, the fa
t that using some adaptive te
h-nique { in whi
h the approximating spa
e is tailored to the fun
tion u itself {is ne
essary in order to get a good approximation rate, is well a

epted. Theresults in Se
tion 3.2 on nonlinear approximation allow to rigorously formalizesu
h fa
t and provide, in the wavelet 
ontext, a simple and eÆ
ient strategyfor adaptively approximating u, if this was given. However, in the partialdi�erential equations framework the fun
tion that one needs to approximateis not known. We would then like a strategy for designing an approximationspa
e for the (unknown) solution u of the given PDE with the same approxi-mation property that one would get if the solution was known.In order to do so, a

ording to the abstra
t approa
h des
ribed in Se
-tion 4.1, the �rst step is to transform the given 
ontinuous problem into an1-dimensional problem: we express u in terms of the res
aled basis f � �g�,� � = 2�js �, and we rewrite the initial 
ontinuous problem (3.3.2) in terms ofthe Fourier 
oeÆ
ients u = fu�g� of the unknown solutionu =X� u� � �;thus obtaining an 1-dimensional linear system of equations:Au = g (3.4.1)where A = (a�;�)�;�2�; a�;� =< A � �; � � >; g = fg�g� =< f; � � >;are a bi-in�nite matrix and an in�nite array respe
tively. It is not diÆ
ult to
he
k (see Se
tions 2.5.1 and 2.5.2) that A 2 L(`2; `2) and that it is boundedlyinvertible, that is: kAkL(`2;`2) . C1; kA�1kL(`2;`2) . C2:The se
ond step is to write down a 
onvergent numeri
al s
heme for the1-dimensional problem: we design a method �nding an approximate solutionto the 1-dimensional problem (3.4.1) in �N . To this end let us assume thatthe basis f � �g� and the operator A are su
h that it holds for some �0 < 2:A 2 L(`�0w ; `�0w ): (3.4.2)



68 Adaptive s
hemes for linear equations Chapter 3We remark that under suitable spa
e-frequen
y lo
alization properties of thewavelet basis f � �g�, 
ondition (3.6) holds for a wide 
lass of di�erential andpseudo-di�erential operators ([28℄).The abstra
t s
heme we want here to dis
uss is the following, where the tol-eran
e tol 
learly depends on the number N of degrees of freedom:basi
 nonlinear Ri
hardsonbeginInput: N; tolu(0) = 0while kr(n)k`2 > tol do
ompute r(n)as r(n) = g �Au(n)updateu(n+1) = PN (u(n) + �r(n)) 2 �NendOutput: uN =P� u(n+1)� � �endThis is not a 
omputable numeri
al s
heme sin
e it involves operations onin�nite matri
es and ve
tors. Su
h s
heme will be 
oupled in se
tion 3.6.3with suitable 
ompression steps applied both to the operatorA and to the righthand side g, whi
h will allow to a
tually implement it eÆ
iently. Neverthelessit is interesting to 
onsider su
h a s
heme in order to analyze the in
uen
e ofthe nonlinear operator PN . In parti
ular the main result of this se
tion is thefollowing Theorem:Theorem 3.4.1: Let A 2 L(`�0w ; `�0w ) \ L(`2; `2) for some �0 < 2. Then thereexists a ~� < 2 and a �0 > 0 su
h that, for all �, 0 < � < �0, it holds (theimpli
it 
onstants in the inequalities depending on �)(i) stability: if g 2 `2, we havekunk`2 . kgk`2; 8n 2 N ; (3.4.3)
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tion 3.4. Nonlinear Ri
hardson I: the basi
 s
heme 69(ii) approximation error estimate: if g 2 `�w, ~� < � � 2 then, setting en =un � u, it holds for some � < 1:kenk`2 . �nkeok`2 + 11� �N�( 1�+ 12 ); (3.4.4)In order to prove theorem 3.4.1 we need to re
all the following lemma [28℄.Lemma 3.4.1: Let A 2 L(`�0w ; `�0w ) \ L(`2; `2), for some �0 < 2. Then thereexists a 
onstant �0 > 0 and a ~� , �0 � ~� < 2, su
h that 8� with 0 � � � �0 itholds: kI � �AkL(`2;`2) � � < 1; (3.4.5)kI � �AkL(`�w;`�w) � 
 < 1; for all �; ~� � � � 2 (3.4.6)Proof of Theorem 3.4.1: First of all we observe that PN is `2-
ontra
tive.Then, sin
e un 2 `2 (only N 
oeÆ
ients are non zero by de�nition), usingLemma 3.4.1, by (3.4.5) one has:kun+1k`2 = kPN(un+�(g�Aun))k`2 � kun+�(g�Aun)k`2 � k�gk`2+�kunk`2:By iterating this bound we obtain:kun+1k`2 �  nXi=0 �i! k�gk`2 + �n+1ku0k`2 ;whi
h, sin
e � < 1 and u0 = 0, yields (3.4.3).Now let "n = PN(un + �(g �Aun))� (un + �(g �Aun)):A simple 
al
ulation yields:en+1 � en + �Aen = "n;whi
h, taking the `2 norm and using (3.4.5) again, yieldsken+1k`2 � �kenk`2 + k"nk`2 : (3.4.7)Iterating (3.4.7), we then obtain:ken+1k`2 = nXk=0 �n�kk�kk`2 + �n+1ke0k`2 � �max0�k�n k"kk`2� nXi=0 �i + �n+1ke0k`2:(3.4.8)



70 Adaptive s
hemes for linear equations Chapter 3The sum on the right hand side of (3.4.8) 
onverges (� < 1) and then we 
anwrite: ken+1k`2 � 11� � maxk k"kk`2 + �n+1ke0k`2: (3.4.9)To 
on
lude, we only need to give an uniform bound on k"kk`2. Using Lemma3.4.1 it is not diÆ
ult to show that g 2 `�w implies uk + �(g�Auk) 2 `�w with:kuk + �(g �A uk)k`�w � C; (3.4.10)uniformly in k. Indeed kI��AkL(`�w;`�w) � 
 < 1 and sin
e PN is `�w 
ontra
tive,setting wk+1 = uk + �(g �Auk)we 
an write:kwk+1k`�w = k(I � �A)uk + �gk`�w � k(I � �A)ukk`�w + k�gk`�w � 
kukk`�w + k�gk`�w= 
kPN (wk)k`�w + k�gk`�w � 
kwkk`�w + k�gk`�w :By iterating this bound, we obtain:kwk+1k`�w � 
kkw1k`�w + kXi=0 
i! k�gk`�w � �1� 
kgk`�w ; 8k;whi
h yields (3.4.10). Thanks to (3.4.10), by applying Theorem 3.2.1, we havethat: maxk k"kk`2 . N�( 1�+ 12 )maxk kuk + �(g �Auk)k`�w � N�( 1�+ 12 )C(g):Combining su
h bound with (3.4.9), implies the thesis. 2Using norm equivalen
e (3.2.2), this yields the following 
orollary.Corollary 3.4.1: Let u be the solution of (3.3.2) and let g belong to Br+s�;� (
),with r su
h that 0 < r + s � minfS; d=~� � d=2g and with � given by 1=� =r=d + 1=2. If u(n)N = P� u(n)� � � is the non linear approximation of u at stepn given by the non-linear Ri
hardson s
heme with � < �0, then it holds, forsome � < 1:ku� u(n)N kHs(
) � �nku� u(0)N kHs(
) + C1� �N� rd ; 8n 2 N :Remark 3.4.1: Though for simpli
ity we set u0 = 0 throughout this se
tion,it is not diÆ
ult to realize that the result holds un
hanged also for any initialguess in �N .



Se
tion 3.5. Numeri
al results 713.5 Numeri
al resultsIn this se
tion, we test basi
 nonlinear Ri
hardson s
heme on a very simple1D model problem, namely, let T be the unit 
ir
le,Problem 3.5.1: �nd u 2 H1(T) su
h thata(u; v) = (f; v) for all v 2 H1(T);where a(u; v) = RTu0v0 + RTuv and (f; v) = RT fv.The tests we will show in the following aim at studying only the in
uen
e ofthe nonlinear proje
tor PN at ea
h iteration of the s
heme and they won't fa
ethe problem of the e�e
tive 
onstru
tion of the prevision sets. The tests arereferred to di�erent 
hoi
es of the fun
tion f . In parti
ular we will study thebehavior of the error in L2 and H1 norm as a fun
tion of1. the number n of iterations,2. the number N of degrees of freedom to be retained.3.5.1 Two 
asesWe performed the numeri
al tests, by using the pair f �; ~ �g of biorthogonalB-spline wavelets B2:2 on T. We will refer to biorthogonal B-splines waveletsB ~N:N to signify that Vj and ~Vj are the subspa
es of B-splines of order N � 1and ~N � 1 respe
tively (with N; ~N � 1) de�ned on the uniform grid obtainedby splitting the unit interval into 2j equal segments.Let us denote by uJ =Pj�j<J u� � the wavelet de
omposition of the exa
tsolution u at resolution J and by unmaxN the N -terms approximation to uJ ,built after nmax iterations of the s
heme.(A) The exa
t solution of the Problem 3.5.1 isu(x) = e
os 4�x + sin 4�x� e (3.5.1)and f is de�ned by f = �u00 + u.The numeri
al results, performed with J = 9 e nmax = 50, are presentedin the following tables



72 Adaptive s
hemes for linear equations Chapter 3Error in norm L2N kuJ � unmaxN kL210 32.9288520 1.3346130 0.5157040 0.3111751 0.2213161 0.1124271 0.0797781 0.1027692 0.09832102 0.06135Table 3.1. L2-approximation error.Error in norm H1N kuJ � unmaxN kH110 39.8804620 11.9511130 8.3927840 5.9479351 4.8339161 4.0523571 3.3252681 2.8804892 2.56872102 2.30032Table 3.2. H1-approximation error.Plot of the exa
t solution (3.5.1)
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Figure 3.1. Exa
t solution.In the following we show some plots dealing with the behavior of theapproximation error.(*) Behavior of kuJ � unmaxN kL2 as a fun
tion of N
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Figure 3.2. Logarithmi
 plot of the L2-approximation error.(**) Behavior of kuJ � unmaxN kH1 as a fun
tion of N
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Figure 3.3. Logarithmi
 plot of the H1-approximation error.(***) Behavior of kuJ � unNkL2 as a fun
tion of the number n of theiterations, for di�erent values of N
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Figure 3.4. Plot of the error kuJ � unNkL2 as a fun
tion of n, with N =40; N = 61.Having in mind error estimate (3.4.4)kuJ � unNkL2 . �nkuJ � u0NkL2 + 11� �N�( 1�+ 12 );from Figure 3.5.1 it is 
lear that going beyond the eÆ
ient numberof iterations, whi
h 
an be obtained by "balan
ing" the two termson the right-hand side of the above inequality, does not bring anyfurther redu
tion of the approximation error.
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al results 75(B) The exa
t solution of the Problem 3.5.1 isu(x) = (3x if 0 � x � 1=32x+ 3=2 if 1=3 � x � 1: (3.5.2)and f is de�ned by f = �u00+u. The numeri
al results, performed withJ = 9 e nmax = 50, are shown in the following tables.Error in norm L2N kuJ � unmaxN kL210 0.4466620 0.0313830 0.0017340 0.0000151 0.0000261 0.0000871 0.0001781 0.0002992 0.00042102 0.00054Table 3.3. L2-approximation error.Error in norm H1N kuJ � unmaxN kH110 0.9685520 0.2632430 0.0161940 0.0000151 0.0000461 0.0001971 0.0004481 0.0008092 0.00117102 0.00152Table 3.4. H1-approximation error.
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Figure 3.5. Exa
t solution.In the following we show some plots dealing with the behavior of theapproximation error.(*) Behavior of kuJ � unmaxN kL2 as a fun
tion of N
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Figure 3.7. Logarithmi
 plot of the H1-approximation error.Remark 3.5.1: Due to the parti
ular form of the exa
t solution,the approximation errors kuJ � unmaxN kL2 and kuJ � unmaxN kH1 de-
rease in a steep way, rapidly rea
hing the ma
hine pre
ision.(***) Behavior of kuJ �unNkL2 as a fun
tion of n, for di�erent values ofN
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tion of n, with N =40; N = 61.



78 Adaptive s
hemes for linear equations Chapter 33.6 Nonlinear Ri
hardson II: the reliable s
hemeIn this se
tion we dis
uss 
omputable Nonlinear Ri
hardson-type s
hemes inorder to �nd an approximate solution to the problem (3.4.1) in �N .We make the following assumptions: the basis f � �g� and the operator A aresu
h that, setting i(�; �0) = ( 1 supp � \ supp �0 6= ;;0 otherwise; (3.6.1)it holds for some R � 2, for � 2 �j and �0 2 �j0j < A �0 ;  � > j � K�;�0 = K2�( 12+R)jj�j0ji(�; �0): (3.6.2)We remark that under suitable spa
e-frequen
y lo
alization properties ofthe wavelet basis f � �g�, 
ondition (3.6.2) holds for a wide 
lass of di�erentialand pseudo-di�erential operators [28℄.Property (3.6.2) implies the boundedness of the operator A as an operatorfrom `�w to `�w on a whole range of indexes � . In parti
ular we let �0 > 0 besu
h that the matrix K = (K�;�0)�;�0 , satis�esK 2 L(`�w; `�w); 8� � �0:We observe that 
ertainly �0 = �0(R) 
an a
tually be stri
tly smaller than 1,as R in
reases. The relation between the value of R and the a
tual value of �0is the topi
 of the following Lemma whi
h is a simple 
onsequen
e of Theorem2.5.4.Lemma 3.6.1: Let � > d=2. If s < ��d=2, a matrix D, whose entries satisfythe estimate jD�;�0j � K2��jj�j0ji(�; �0); (3.6.3)de�nes a bounded operator in `2 \ `pw, for all p su
h that 1=p = 1=2 + s=d.Let us now 
onsider the following result [28℄.Lemma 3.6.2: Let A satisfy property (3.6.2), and let �0 < 2 be de�ned asabove. Then there exist ~� , �0 � ~� < 2 and a 
onstant �0, su
h that 8� with1 � � � �0 it holds: kI � �AkL(`2;`2) � � < 1; (3.6.4)and 8�; ~� < � � 2, kI � �AkL(`�w;`�w) � 
 < 1: (3.6.5)



Se
tion 3.6. Nonlinear Ri
hardson II: the reliable s
heme 79In order to �nd an approximate solution to problem (3.3.2) in �N , where Nis �xed a priori, we propose a 
omputable nonlinear Ri
hardson type-s
heme,whi
h 
ouples Ri
hardson iterative s
heme and nonlinear approximation. Weobserve that Lemma 3.6.2 guarantees the 
onvergen
e of the plain Ri
hardsons
heme for the solution of the in�nite linear system (3.4.1). Nonlinearity isplugged in the s
heme, by for
ing, at ea
h iteration, the approximate solutionto belong to the nonlinear spa
e �Nn , for some Nn � N . For n1 < n2, weask that Nn1 < Nn2 (and so �Nn1 � �Nn2 ) and that N�n = N for some �n � 1.Roughly speaking at ea
h iteration we in
ate the nonlinear spa
e �Nn , whi
hthe approximate solution u(n+1) belongs to, till we rea
h the target nonlinearspa
e �N . Sin
e the plain Ri
hardson s
heme involves the multipli
ation bythe bi-in�nite matrix A, in order to make su
h an algorithm pra
ti
ally fea-sible, we will also need to approximate su
h multipli
ation. At ea
h iterationthis will be done with a pre
ision �n, with �n+1 � �n. Suitable 
hoi
es for theparameters Nn and �n will be dis
ussed in the following. Clearly, the 
hoi
eof the Nn's and of the �n's will be not made independently, if optimal perfor-man
e is aimed at.Let us for the moment assume that we have sele
ted two sequen
es Nn and �nN0 < N1 < � � �Nn1 < Nn2 < � � � < N�n = N (3.6.6)�0 > �1 > � � � �n1 > �n2 > � � � > ��n (3.6.7)The algorithm is performed in several steps.Computable nonlinear Ri
hardsonStep 1. Initialization: set u(0) = 0.Step 2. Until n � �n, repeatStep 2.1 Prevision: sele
t a �nite dimensional set V (n) � � su
h that, de-noted by Sn the linear subspa
e of `2 of the form Sn = fv 2`2 : v� = 0; � 62 V (n)g, we haveinfv2Sn ku(n) + �r(n) � vk`2 � C�n;where r(n) = g�Au(n) denotes the residual and where the 
onstantC depends only on initial data.Step 2.2 Compute an approximation~r(n) 2 fv = (v�)�2� 2 `2 : � 62 V (n) ) v� = 0gof the residual r(n), in su
h a way that kr(n) � ~r(n)k`2 � C�n.



80 Adaptive s
hemes for linear equations Chapter 3Step 2.3 Proje
tion: set u(n+1) = PNn(u(n) + �~r(n)):Step 2.4 Update: n + 1! nEven if A is a bi-in�nite matrix, the s
heme is reliable as it 
arries out
omputations, at ea
h iteration, over a (�nite) prevision set V (n). Moreoverwith a suitable 
hoi
e (see Remark 3.6.3) of the number Nn of the 
oeÆ
ientsto be retained at ea
h iteration, it is possible to redu
e the 
omputational
ost of the algorithm, without loosing a

ura
y in the approximate solution.Indeed when the number of iterations is small we are far from the exa
t solutionand so we don't loose too mu
h using a small number of degrees of freedom,instead when the number of iterations in
reases, the error of the iteratives
heme be
omes small and in order not to waste this gain, we need to use alarger number of degrees of freedom.3.6.1 PrevisionA 
ru
ial ingredient in the above algorithm is the a priori 
onstru
tion of the�nite dimensional prevision set V (n). As at ea
h iteration of the s
heme werestri
t the a
tion of the nonlinear proje
tor PNn to the �nite set V (n), weneed to 
hoose this set in su
h a way that the 
oeÆ
ients whose indexes wedis
harge a priori (i.e. not belonging to V (n)) are suÆ
iently small, in ordernot to make the algorithm loose a

ura
y in the estimation of the approximatesolution.To a

omplish this goal, we start by de�ning a sort of measure of theintera
tions of two indexes � = (j; k) and �0 = (j 0; k0): for ea
h � we de�ne aneighborhood in � by: I(�; �) = f�0 : v(�; �0) > �g;where � is a given toleran
e andv(�; �0) = 2�R2 jj�j0ji(�; �0);with R depending on the regularity of wavelet basis andi(�; �0) = ( 1 supp � \ supp �0 6= ;;0 otherwise: (3.6.8)Let now w 2 �N w =X�2��w� �; #(��) = N:



Se
tion 3.6. Nonlinear Ri
hardson II: the reliable s
heme 81We want to 
ompute r�:r� = g� � (Aw)� = g� �X�02�� a�;�0w�0; (3.6.9)where a�;�0 =< A � �; � �0 >, within a pres
ribed a

ura
y. In order to do so,we split the sum at the right hand side as the sum of two 
ontributions: one,d�, 
oming from frequen
ies �0 belonging to the neighborhood I(�; �) of �; theother, e�, 
oming from frequen
ies not belonging to it:(Aw)� = d� + e�; (3.6.10)where d� = X�02��\I(�;�) < A �0 ;  � > w�0 ; (3.6.11)e� = X�02��nI(�;�) < A �0 ;  � > w�0: (3.6.12)The 
ontribution e� to (Aw)�, of frequen
ies �0 not belonging to the neigh-borhood I(�; �) of �, 
an be 
ontrolled by tuning the parameter �, that is witha suitable 
hoi
e of the size of the neighborhood I(�; �). To this aim we let�1 be su
h that the matrix �K = ( �K�;�0)�;�0, with, for � 2 �j and �0 2 �j0�K�;�0 = 2R2 jj�j0jK�;�0 satis�es�K 2 L(`�w; `�w); 8� � �1; (3.6.13)where, by using Lemma 3.6.1 with D = �K and � = 1=2 + R=2, the value of�1 = �1(R) 
an again be stri
tly smaller than 1, as R is suÆ
iently large.We have the following Lemma.Lemma 3.6.3: Let A satisfy (3.6.2). There exist 
onstant C0 and C1 depend-ing on the operator A and the wavelet basis f �g�, su
h that we have:kek`2 � C0�kwk`2; (3.6.14)and for all p, �1 � p < 2 kek`pw � C1�kwk`pw : (3.6.15)Proof: Using property (3.6.2) in the de�nition of e�, together with thede�nition of the set I(�; �), we obtain the following estimate for all �:je�j < �KX�0 2�R+12 jj�j0ji(�; �0)jw�j = �( �Kw)�: (3.6.16)



82 Adaptive s
hemes for linear equations Chapter 3We then easily write kek`2 � �k �KkL(`2;`2)kwk`2;and for all p, �1 � p < 2 kek`pw � �k �KkL(`pw;`pw)kwk`pw :By using Lemma 3.6.1 it is not diÆ
ult to prove that there exist 
onstants C0and C1 su
h that k �KkL(`2;`2) � C0; and k �KkL(`pw;`pw) � C1; and this allows to
on
lude. 2Now we 
ome to the topi
 of approximating the right hand side g. As amatter of fa
t we re
all the following result [47℄:Lemma 3.6.4: Let g 2 `1 and let T �� g be de�ned by:(T �� g)� = (g� jg�j � � 22��0 jg�j < � 22�� :The following estimate holds for every 0 < � � 2:kg � T �� gk`2 � �kg � T �� gk�=2`� � �kgk�=2`� :De�ne then sets B and C:B = f� : I(�; �) \ �� 6= ;g;C = f� : jg�j � � 22�� g:We then de�ne ~r = ~r(w) in fv = (v�) 2 `1; v� = 0 8� 62 B [ Cg as~r = T �� g � d; that is ~r� = 8>>><>>>:g� � d� � 2 B \ Cg� � 2 C n B�d� � 2 B n C0 otherwise: (3.6.17)Now it is easy to obtain the following two Corollaries:Corollary 3.6.1: Let r = g �Aw, then we havekr � ~rk`2 � C0�(kwk`2 + kgk`2):Corollary 3.6.2: If ~r is de�ned as above, then it holds that:k~rk`�w � C1(kwk`�w + kgk`�w):



Se
tion 3.6. Nonlinear Ri
hardson II: the reliable s
heme 833.6.2 Error EstimateLet us then suppose that we are give non in
reasing sequen
e (�n)n of positivereal numbers and a non de
reasing sequen
e (Nn)n of integers, respe
tively
onverging to 0 and to +1 as n �! +1.Given u(n), we 
onsider the prevision set V (n) := B(n)[C(n), where �(n) � �is the set 
ontaining the 
oeÆ
ients of u(n):B(n) = f� : I(�; �n) \ �(n) 6= ;g;C(n) = f� : jg�j � � 22��n g:We then de�ne ~r(n) := ~r(u(n)) 2 fv 2 `1; v� = 0 8� 62 V (n)g a

ording to(3.6.17): ~r(n)� = T �n� g � X�02I(�;�n)\�(n) < A �0 ;  � > u(n)�0and we 
onsider the nonlinear Ri
hardson s
heme:u(n+1) = PNn(u(n) + �~r(n)): (3.6.18)The residual ~r(n) = (~r(n)� )�2V (n) is the trun
ated residual 
omputed on theprevision set V (n).The main result of this paper is the following Theorem, whi
h 
onsiders thein
uen
e of the prevision step on the a

ura
y of the algorithm and providesan error estimate [19℄:Theorem 3.6.1: Let A satisfy assumption (3.6.2). Then there exist a ~� < 2,a �0 > 0 and an �� > 0 su
h that if �0 < ��, for all �, 0 < � < �0, it holds (the
onstants in the inequalities depending on initial data):(i) stability: if g; u(0) 2 `2 we haveku(n)k`2 � C; 8n 2 N ; (3.6.19)(ii) approximation error estimate: if g 2 `�w, with maxf~� ; �1g < � � 2, thenit holds for some � < 1:ku(n+1) � uk`2 . �n+1ku(0) � uk`2+ C(ku(0)k`2; kgk`2) � nXi=0 �n�i�i + nXi=0 �n�iN�( 1�� 12 )i ! :(3.6.20)



84 Adaptive s
hemes for linear equations Chapter 3Proof: Let ~� and �0 be given by Lemma 3.6.2. Let us start by proving thestability estimate (3.6.19). First of all we observe that PNn is trivially both `2and `�w -
ontra
tive. A

ording to (3.6.18), by Lemma 3.6.2 we have:ku(n+1)k`2 � k(I � �A)u(n)k`2 + �kgk`2 + �kek`2� (�+ �C0�n)ku(n)k`2 + �kgk`2 (3.6.21)where we have used inequality (3.6.14). Then iterating relation (3.6.21), weobtain:ku(n+1)k`2 �  nYi=0(�+ C��n)! ku(0)k`2 + � 1 + nXi=0 nỲ=i(�+ C��`)! kgk`2 :(3.6.22)Similarly we have:ku(n+1)k`�w �  nYi=0(
 + C��n)! ku(0)k`�w + � 1 + nXi=0 nỲ=i(
 + C��`)! kgk`�w :(3.6.23)Sin
e 
ondition (3.6.7) implies �n < �0, we then haveku(n+1)k`2 � (�+ C��0)n+1ku(0)k`2 + � nXi=0 (�+ C��0)ikgk`2 : (3.6.24)If �0 is 
hosen in su
h a way that (� + C��0) < 1, then the sum on the righthand side 
onverges, and this yields (3.6.19). Analogously, if �0 is 
hosen insu
h a way that (
 + C��0) < 1, then one 
an prove thatku(n+1)k`�w � C� : (3.6.25)Let us now 
onsider the error. Letting"(n) = PNn(u(n) + �~r(n))� (u(n) + �~r(n));a simple 
al
ulation yields:u(n+1) � u = (I � �A)(u(n) � u) + �(~r(n) � r(n)) + "(n);where r(n) = g�Au(n) is the residual 
al
ulated on �, from whi
h, taking the`2 norm and using (3.6.4),ku(n+1) � uk`2 � �ku(n) � uk`2 + �k~r(n) � r(n)k`2 + k"(n)k`2: (3.6.26)
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tion 3.6. Nonlinear Ri
hardson II: the reliable s
heme 85Iterating (3.6.26), we then obtain:ku(n+1) � uk`2 � �n+1ku(0) � uk`2 + � nXi=0 �n�ik~r(i) � r(i)k`2 + nXi=0 �n�ik"(i)k`2 :(3.6.27)The �rst term on the right hand side 
onverges to zero, sin
e, by Lemma 3.6.2we have that � < 1. Let us then bound the remaining two terms.By applying Corollary 3.6.1 with w = u(i), together with the stability result(3.6.19) we obtain: k~r(i) � r(i)k`2 � C(ku(0)k`2; kgk`2) �iAs far as k"(n)k`2 is 
on
erned, by applying Theorem 3.2.1, we have that:k"(n)k`2 . N�( 1�+ 12 )n ku(n) + �~r(n)k`�w :Let us then bound the `�w norm on the right hand side. Thanks to Corollary3.6.2, we have: ku(n) + �~r(n)k`�w � ku(n)k`�w + �k~r(n)k`�w. C(u(0); g): (3.6.28)whi
h yields k"(n)k`2 . N�( 1�� 12 )n C(g; u(0)):Combining su
h bound with (3.6.27) and using Lemma 3.6.4 imply thethesis:ku(n+1)�uk`2 . �n+1ku(0)�uk`2+C(ku(0)k`2; kgk`2) � nXi=0 �n�i�i + nXi=0 �n�iN�( 1�� 12 )i !2Remark 3.6.1: We would like to point out that in order for the sumnXi=0 nỲ=i(�+ C��`)at the right hand side of (3.6.22) to 
onverge it is suÆ
ient that(�+ C��`) � 
 < 1; 8` > �̀;for some �̀. The method is then stable also if �0 is not smaller than ��. Clearly,in su
h 
ase the stability 
onstant will depend on the sequen
e (�n). Su
h
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hemes for linear equations Chapter 3dependen
e is however not a problem as far as the asymptoti
 is 
on
erned,sin
e su
h 
onstant gets smaller if the sequen
e (�n) gets smaller element-wise.In parti
ular one 
an 
hoose a referen
e sequen
e (��n) and for all sequen
e(�n) su
h that �n < ��n the stability 
onstant is uniformly bounded by a 
onstantdepending on (��n).Using norm equivalen
es (4.2.5), the above result 
an be translated in termsof the 
orresponding 
ontinuous problem (3.3.1), as stated by the following
orollary:Corollary 3.6.3: Let u be the solution of (3.3.2) and g belong to Br+s�;� (
),with � given by 1=� = r=d + 1=2 and with r su
h that 0 < r + s �min(S; d=(maxf~� ; �1g) � d=2). If u(n+1) = P� u(n)� � � is the non linear ap-proximation of u at step n + 1 of the non-linear Ri
hardson s
heme, with� < �0, then it holds, for some � < 1:ku� u(n)kHs(
) . nXi=0 �n�iN� rdi + �2 nXi=0 �n�i�i + �n+1ku(0) � ukHs(
);for all n 2 N, where the impli
it 
onstants depend only on initial data.Remark 3.6.2: Though for simpli
ity we �xed throughout this paper a varia-tional framework 
orresponding to an ellipti
 Neumann BVP on the boundeddomain 
, it is not diÆ
ult to 
he
k that the whole proof of the result obtainedrelies on the representation (3.4.1) of the Problem and on the norm equiva-len
es (3.2.1) and (3.2.3). Therefore su
h results 
arry over to mu
h moregeneral situations (Diri
hlet BVP, Integral equations) where the spa
e Br+s�;� issubstituted by the spa
e for whi
h a representation of the form (3.2.3) holds.3.6.3 Choosing the toleran
esWe now need to 
hoose the sequen
es (Ni) of the number of d.o.f. to beretained at ea
h iteration and (�i) of the toleran
es to be used in the previsionstep. In order to do so we imposing a sort of \balan
ing" between the terms ofthe sums in equation (3.6.1), in su
h a way that all 
ontributions to the errorhave roughly the same order. More pre
isely we ask that�n+1 � nXi=0 �n�i�i � nXi=0 �n�iN�( 1�� 12 )i :Sin
e nXi=0 �n�i�i = �n+1 nXi=0 ��i�1�i;



Se
tion 3.7. Non
onforming domain de
omposition 87the toleran
es �i should then be 
hosen in su
h a way that+1Xi=0 ��i�1�i < +1:It is not diÆ
ult to see that this holds for instan
e for the 
hoi
e�i = �i+1i log i :Analogously, we will 
hoose NiNi = � i log i�i+1 � 2�2�� :If we are interested in approximating u with N degrees of freedom, we willthen have to stop for N = Nn = �n logn�n+1 � 2�2�� ;that is at iteration n(N), n(N) being the smallest integer su
h thatlogn + log logn+ (n+ 1)j log�j � ( 2�2� � ) logN:It is not diÆ
ult to realize thatn � (1=� � 1=2) logN2 + j log�j � 1:3.7 Non
onforming domain de
omposition3.7.1 Fun
tional SettingLet 
 � IRn be a bounded polygonal domain with Lips
hitz boundary �
.Let 
 be de
omposed into a �nite number of non{overlapping polygonal sub-domains 
k, k = 1; : : : ; K,
 = K[k=1
k; 
k \ 
m = ;; k 6= m; (3.7.1)where � =  K[k=1 �
k! n �
 (3.7.2)



88 Adaptive s
hemes for linear equations Chapter 3is 
alled the skeleton of the de
omposition. We will also employ the notation�k := �
k n �
 (3.7.3)so that � = K[k=1�k: (3.7.4)Let H1=2(�
k) and H1=200 (�k) be de�ned as the tra
e spa
e of, respe
tively,H1(
k) and H1�
(
k) := fvk 2 H1(
k); vk = 0 on �
 \ �
kg, with normsk�kH1=2(�
k) := infvk2H1(
k): vk j�
k=� kvkkH1(
k); (3.7.5)k�kH1=200 (�k) := infvk2H1�
(
k): vkj�k=� kvkkH1(
k):Remark 3.7.1: Equivalent norms for H1=2(�
k) and for H1=200 (�k) 
an be de-�ned through the norms of H1=2(℄0; 1[n�1) and H1=200 (℄0; 1[n�1) by using an atlasand partitions of unity where the 
onstants in the equivalen
e depend on thediameter of 
k.For ea
h k, let H1=2�
 (�k) be either H1=2(�k) or H1=200 (�k), depending onwhether �k is a 
losed or an open set, with normj�j1=2;�k := ( k�kH1=200 (�k); if �k \ �
 6= ;;k�kH1=2(�
k); otherwise, (i.e., if �k = �
k): (3.7.6)We will denote by (�; �)1=2;�k the 
orresponding inner produ
t. Moreover, letH�1=2�
 (�k) be the 
orresponding dual, whose norm and inner produ
t will bedenoted by j�j�1=2;�k and (�; �)�1=2;�k. Duality between H1=2�
 (�k) and H�1=2�
 (�k)will be written as h�; �ik.We 
an now introdu
e the fun
tional setting for the domain de
ompositionmethod we are going to 
onsider. Let V be the produ
t spa
eV := f(v1; : : : ; vK); vk 2 H1(
k); vk = 0 on �
 \ �
k; k = 1; � � � ; Kg(3.7.7)whi
h is isomorphi
 tofv 2 L2(
) : vk = vj
k 2 H1(
k); vk = 0 on �
 \ �
k; k = 1; � � � ; Kg;endowed with the normkvk2V := KXk=1 kvkk2H1(
k); v 2 V; (3.7.8)



Se
tion 3.7. Non
onforming domain de
omposition 89indu
ed by the inner produ
t(u; v)V := KXk=1(uk; vk)H1(
k): (3.7.9)Moreover, let � and � be de�ned by� := KYk=1H�1=2�
 (�k) (3.7.10)and � = H10 (
)j�, that is� := f� 2 L2(�) : there exists v 2 H10 (
) su
h that � = vj�g: (3.7.11)� and � are endowed with the normsk�k� := KXk=1 j�kj2�1=2;�k ; k�k� := infv2H10 (
): vj�=� kvkH1(
); (3.7.12)respe
tively. We remark that H10 (
) 
an be identi�ed with a subset of V ,H10 (
) �= fv = (vk)k=1;��� ;K 2 V : there exists � 2 �; vk = � on �kg � V:In the following, when writing v = (vk) 2 H10 (
) for an element v 2 V ,we will refer to su
h an isomorphism. Moreover, for the sake of notationalsimpli
ity we will write (vk) for (vk)k=1;��� ;K, always assuming that, unlessotherwise stated, the index k ranges from 1 to K.An observation that will be important in the sequel is the following:Proposition 3.7.2: It holds�0 = KYk=1H1=2�
 (�k); k�k�0 �  KXk=1 j�kj21=2;�k!1=2 : (3.7.13)Moreover, one has that(i) the spa
e � 
an be identi�ed with a proper subset of �0, by identifying� 2 � with (�k) 2 �0, �k = �j�k ;(ii) for � 2 � the equivalen
esk�k� �  KXk=1 j�kj1=2;�k!1=2 � k�k�0; (�k = �j�k); (3.7.14)hold.



90 Adaptive s
hemes for linear equations Chapter 3Proof: The proof of (3.7.13) follows by standard arguments sin
e the dual ofa Cartesian produ
t of spa
es is the produ
t of the duals.As far as (ii) is 
on
erned, let now � 2 � and let v 2 H10 (
) be any fun
tionsu
h that v = � on �. Then we haveKXk=1 j�j21=2;�k � KXk=1 kvk2H1(
k) = kvk2H10 (
):Sin
e V is arbitrary, this yieldsKXk=1 j�j21=2;�k . infv2H10 (
): vj�=� kvk2H1(
) = k�k2�:Let now u in H10 (
) be de�ned su
h that ��u = 0 in 
k and u = � on �k forall k. Then one hask�k2� � kuk2H10 (
) = KXk=1 kuk2H1(
k) . KXk=1 j�j21=2;�k :
3.7.2 The Three-Fields formulationWe 
onsider the se
ond order ellipti
 boundary value problem� div a(x) grad u(x) = f in 
;u = 0 on �
; (3.7.15)with a suÆ
iently smooth and uniformly positive de�nite matrix a(x) andf 2 L2(
). To solve this by a domain de
omposition approa
h, for ea
hk 2 f1; : : : ; Kg let ak : H1(
k) � H1(
k) ! IR be the bilinear form indu
edby the di�erential operator on the subdomain 
k,ak(u; v) = Z
k a(x) gradu � grad v dx:A 
omposed bilinear form a : V � V ! IR 
an be de�ned bya(�; �) := KXk=1 ak(�; �): (3.7.16)
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tion 3.7. Non
onforming domain de
omposition 91For all v 2 H10 (
), a(�; �) satis�esa(v; v) = KXk=1 Z
k a(x)j grad vj2 dx � kvk2H1(
): (3.7.17)In alternative to the standard weak formulation of the boundary value problem(3.7.15), �nd u� 2 H10(
) su
h thata(u�; v) = (f; v)L2(
) for all v 2 H10 (
); (3.7.18)we 
an then 
onsider the Three Fields Formulation: �nd (u; �; ') 2 V ����su
h that8>>>>>>>>><>>>>>>>>>:
a(u; v)� KXk=1h�k; vkik = (f; v)L2(
) for all v 2 V;KXk=1h'� uk; �kik = 0 for all � 2 �;KXk=1h�k; �ik = 0 for all � 2 �: (3.7.19)

This formulation was introdu
ed in [23℄, where it was shown that problem(3.7.19) has for every f 2 L2(
) a unique solution (u; �; '), satisfying8>>>><>>>>: uk = u� in 
k; k = 1; : : : ; K;�k = a �u��nk on �
k; k = 1; : : : ; K;' = u� on �; (3.7.20)where �u�=�nk is the outward normal derivative of the restri
tion of u� to 
k.We 
an write the system (3.7.19) more 
onveniently in operator form asfollows. De�ne A : V ! V 0 byhAv; vi := a(v; v):For ea
h k = 1; : : : ; K, let Bk : H1�
(
k)! H1=2�
 (�k) denote the tra
e operator.Let then B : V ! �0 be de�ned by B := diag(B1; : : : ; BK). Moreover, letCk : H�1=2�
 (�k)! �0 be de�ned ashCk�k; �i := h�k; �ik;



92 Adaptive s
hemes for linear equations Chapter 3and let C : � ! �0 be assembled as C := diag(C1; : : : ; CK). With thesenotations, the system (3.7.19) 
an be written as follows: �nd (u; �; ') 2 V ��� � as solution of0� A �BT 0�B 0 CT0 C 0 1A0� u�' 1A = 0� f00 1A : (3.7.21)Remark 3.7.3: [23℄ One of the interests for the Three Fields Formulation liesin the observation that, for given ' 2 �, the 
omputation of u and � redu
esto solving K independent Diri
hlet problems on the subdomains 
k. Ea
h ofthese is of the form� Ak �(Bk)T�Bk 0 �� uk�k � = � fk�(Ck)T ' � : (3.7.22)' 
an then be 
omputed as the solution ofCA�1CT' = CA�1� f0 � (3.7.23)where A := � A �BT�B 0 � ; C := (0 C); (3.7.24)Here the operator S := CA�1CT is just the Poin
ar�e-Steklov operator on �.Hen
e, by applying a S
hur 
omplement te
hnique, the solution of the originalproblem (3.7.15) or equivalently of the problem (3.7.20), is redu
ed to thesolution of the equation on the "tra
e" unknown:S' = g; (3.7.25)with g = CA�1� f0 �.It has been shown in [23℄ the following resultLemma 3.7.4: S is an isomorphism from � to �0 that satis�es in addition�0hS�; �i� � k � k2�.



Se
tion 3.7. Non
onforming domain de
omposition 933.7.3 An adaptive wavelet methodOur aim is to solve the 
ontinuous linear problemS' = g (3.7.26)by means of an adaptive wavelet method. A

ording to the "new approa
h" we�rst have to transform the initial 
ontinuous problem (3.7.26) into an equiva-lent 1-dimensional problem.To do this let us assume that we have a 
ouple of biorthogonal waveletbases for L2(�)  := f j;m; (j;m) 2 r := [j�j0rjg; (3.7.27)~ := f ~ j;m; (j;m) 2 r := [j�j0rjg;with the following properties:(P1) any fun
tion � 2 L2(�) 
an be expanded in terms of either  or ~ ,� =Xj�j0 Xm2rjh�; ~ j;mi j;m =Xj�j0 Xm2rjh�;  j;mik ~ j;m; (3.7.28)(h�; �i denoting here the L2(�) s
alar produ
t);(P2) one has  j;m 2 �, and the following norm equivalen
e holdsk�k2� �Xj�j0 2j Xm2rj jh�; ~ j;mij2; � 2 �; (3.7.29)(P3)  and ~ have lo
al support, i.e.,diam(supp j;m) � diam(supp ~ j;m) � 2�j: (3.7.30)There are by now a number of 
onstru
tions of su
h biorthogonal wavelets[34℄, [25℄, [42℄, [43℄ that 
an be applied to the present setting. In parti
ularwe refer to [15℄ for a a parti
ularly simple 
onstru
tion whi
h, in the two-dimensional 
ase, is suÆ
ient for the present purpose.Now we de
ompose the fun
tions ' and S', by 
hoosing two suitableres
aled versions f ̂; ~̂ g and f � ; �~ g, of the given pair of biorthogonal waveletbases f ; ~ g, su
h that' 2 � ' =Xj�j0 Xm2rj 'j;m � j;m; � j;m = 2�j j;m;



94 Adaptive s
hemes for linear equations Chapter 3S' 2 �0 S' =Xj�j0 Xm2rj sj;m � j;m;  ̂j;m = 2j j;m:Now we build an1-dimensional operator S whi
h a
ts on wavelet 
oeÆ
ientsas follows: S : ' = f'j;mgj;m ! s = fsj;mgj;m: (3.7.31)Thanks to (P.2), the above operator S is an isomorphism from `2 onto `2:S : `2 ! `2:Thus to solve the 
ontinuous problem (3.7.26) is equivalent to solveS' = g;where ' 2 `2 is the in�nite ve
tor of the wavelet 
oeÆ
ients of the unknown so-lution, while the in�nite ve
tor g = fgj;mgj;m, 
ontains the wavelet 
oeÆ
ientsof the fun
tion g 2 �0.Now let us 
onsider the following S-nonlinear Ri
hardson s
heme forthe solution of the 1-dimensional problem S' = g:given '0for i = 0; : : :1. Compute (S'i)"i approximation to S'i, with pre
ision "i.2. Compute 'i+1 = PNi+1('i + �(g � (S'i)"i)endwhere the nonlinear proje
tor PNi+1 retains the Ni+1 largest, in absolute value,wavelet 
oeÆ
ients.It is important to remark that 
omputing (S'i)"i, approximation to S'i,is equivalent to approximately solving K de
oupled Diri
hlet problems, whereK is the number of the subdomains. This will in general be done by applyingan adaptive solver (not ne
essarily of wavelet type).We analyze su
h a nonlinear Ri
hardson-type s
heme, as an element of amore general 
lass of algorithms, whi
h we present in the next se
tion withinan abstra
t (not ne
essarily wavelet) framework.



Se
tion 3.8. An abstra
t framework for Nonlinear Ri
hardson-type algorithm 953.8 An abstra
t framework for Nonlinear Ri
hardson-type algorithmAssumeX and Y are quasi-normed spa
es, with Y 
ontinuously embedded intoX, and that fSNgj�0 and fTMgj�0 are two unrelated sequen
es of nonlinearapproximation spa
esS0 � : : : � SN � SN+1 � : : : � Y � X;T0 � : : : � TM � TM+1 � : : : � Y � X;su
h that for some s > 0 (s is 
alled rate of 
onvergen
e) one has Ja
kson-typeestimates, for all f 2 YdistX(f; SN) = infg2SN kf � gkX . N�skfkY ; (3.8.1)distX(f; TM) = infg2TM kf � gkX .M�skfkY (3.8.2)and Bernstein-type estimateskfkY . N skfkX if f 2 SN ; (3.8.3)kfkY .M skfkX if f 2 TM : (3.8.4)Moreover assume that SN + SN 0 � SN+N 0; N > 0; (3.8.5)TM + TM 0 � TM+M 0; M > 0; (3.8.6)and there exist two nonlinear proje
torsPN : X ! SN ; (3.8.7)and QM : X ! TM ; (3.8.8)whi
h are quasi-optimalkf � PNfkX . distX(f; SN ) . N�skfkY ; f 2 X; (3.8.9)kf � QM fkX . distX(f; TM) .M�skfkY ; f 2 X; (3.8.10)and X; Y -
ontra
tive:kPN (f)kX � kfkX ; kPN (f)kY � kfkY ; (3.8.11)kQM (f)kX � kfkX ; kQM (f)kY � kfkY : (3.8.12)



96 Adaptive s
hemes for linear equations Chapter 3Finally we suppose that PNi are su
h that for all f 2 X there exist SfNi � SNilinear subspa
e of SNi and�Ni : f 2 X ! �Ni(f) 2 ~SfNi ; (3.8.13)bounded linear proje
tor, su
h that�Ni(f) = PNi(f):Let now 
onsider the 
ontinuous linear operator L : X ! X su
h that whenit is restri
ted to more regular spa
e Y , whi
h is 
ontinuously embedded intoX, it preserves su
h regularity: LjY : Y ! Y:Let us assume that(S.1) there exists �0 su
h that for all � with 0 < � < �0 it holdskI � �LkX!X � � < 1; (3.8.14)kI � �LkY!Y � 
 < 1: (3.8.15)(S.2) there exists an approximation strategy for L' su
h that for all " > 0,there exists a (L')" with(L')" 2 TM" ; M" depending on "; (3.8.16)satisfying the following inequalitykL'� (L')"kX � "k'kX; (3.8.17)for all ' 2 X.The approximation strategy for L' 
an be regarded as a bla
k-box approx-imation strategy satisfying inequality (3.8.17). For instan
e, in the 
ontextof three-�eld formulation, it has been studied [14℄ a �nite element based ap-proximation strategy for S' 2 �0, where S is the 
ontinuous Steklov-Poin
ar�eoperator, su
h that for every " > 0 it exists a (S')" verifyingkS'� (S')"k�0 � "k�k�:By using norm equivalen
es, the above inequality 
an be equivalently restatedin wavelet 
oordinates kS'� (S')"k`2 � "k'k`2 :



Se
tion 3.8. An abstra
t framework for Nonlinear Ri
hardson-type algorithm 97Generally no a-priori information is available about the relation between thetoleran
e " and the number M" of degrees of freedom used to build the ap-proximation. anyway nonlinear approximation provides a natural ben
hmarkfor this kind of relation and in view of this we give the following de�nition ofoptimal approximation strategy.De�nition Let s be the rate of 
onvergen
e asso
iated to the sequen
e fTMgMof nonlinear spa
es of approximation. The approximation strategy in (S.2) issaid to be optimal if f 2 X �! "(M")s � K;for all " > 0.We are interested in the followingProblem 3.8.1: Given f 2 Y , solve the linear equationL' = f: (3.8.18)In parti
ular, given a number ~N > 0 of degrees of freedom, we are interestedin �nding an approximation ' ~N 2 S ~N to the exa
t solution '� of (3.8.18).We 
onsider the following L-nonlinear Ri
hardson s
heme:given '0 2 SN0for i = 0; : : :1. Compute (L'i)"i 2 TM"i2. Compute 'i+1 = PNi+1('i + �(f � (L'i)"i)) 2 SNi+1endRemark 3.8.1: It is important to remark that the above s
heme is able to
ouple two eventually di�erent approximation strategies (e.g. �nite element-wavelet or �nite element-�nite element) into an iterative pro
edure, one strat-egy 
oming from the 
hoi
e of the nonlinear spa
es fSNg and the other fromthe 
hoi
e of the nonlinear spa
es fTMg.Let us now prove the following resultLemma 3.8.1: If the sequen
e f"ig is 
hosen su
h that�+ �"i < 1; (3.8.19)then the L-nonlinear Ri
hardson is X-stable.



98 Adaptive s
hemes for linear equations Chapter 3Proof: Using the X-
ontra
tivity of the nonlinear proje
tor PN andassumption (S.2) yieldsk'i+1kX = kPNi+1('i + �(f � (L'i)"i))kX� k'i + �(f � (L'i)"i)kX� k(I � �L)'ikX + �k(L'i)"i � L'ikX + �kfkX� �k'ikX + �"ik'ikX + �kfkX� (�+ �"i)k'ikX + �kfkX :By iterating the above inequality we obtaink'i+1kX � k'0kX�ik=0(�+ �"k)k + �kfkX iXk=0(�+ �"k)k; (3.8.20)whi
h yields the inequality k'i+1kX � CX ; (3.8.21)if we 
hoose f"ig su
h that �+ �"i � � < 1:Let us now dis
uss the Y -stability of the algorithm.Lemma 3.8.2: Under the assumption of Lemma 3.8.1, if the sequen
es fNkgand f"kg are 
hosen in su
h a way that1Xk=0 �i�kN sk+1"k <1; (3.8.22)then the L-nonlinear Ri
hardson is Y -stable.Proof: Using the de�nition of the linear proje
tor �Ni+1 yieldsk'i+1kY = kPNi+1('i + �(f � (L'i)"i))kY= k�Ni+1('i + �(f � (L'i)"i))kY� k�Ni+1('i + �(f � L'i))kY + �k�Ni+1(L'i � (L'i)"i)kY :As �i+1(L'i� (L'i)"i) 2 SNi+1 , then by using Bernstein inequality (3.8.3), wehave k'i+1kY � k(I � �S)'ikY + �kfkY +N si+1kL'i � (L'i)"ikX :



Se
tion 3.8. An abstra
t framework for Nonlinear Ri
hardson-type algorithm 99Then assumptions (S.1) and (S.2) yieldk'i+1kY � �k'ikY + �kfkY +N si+1"ik'ikX� �k'ikY + �kfkY + CXN si+1"i:By iterating the above inequality we obtaink'i+1kY � �i+1k'0kY + CX iXk=0 �i�kN sk+1"k + �1� �kfkY :Hen
e the property k'i+1kY � CYfollows if we 
hoose the sequen
es fNkgk and f"kg su
h that1Xk=0 �i�kN sk+1"k <1:
Theorem 3.8.1: Under the assumptions of Lemmas 3.8.1 and 3.8.2, if theapproximation strategy for L' is optimal, then the following error estimateholds k'i+1 � 'kX . iXk=0 �i�kN�sk+1 + �i+1k'0 � 'kX + iXk=0 �i�k"k; (3.8.23)with � < 1 and all the 
onstants depending only on the initial data.Proof: By using Ja
kson estimate (3.8.1), we havek'i+1 � 'kX � k(PNi+1 � I)('i + �(f � (L'i)"i))kX+k(I � �L)('i � ')kX + �kL'i � (L'i)"ikX� N�si+1k'i + �(f � (L'i)"i)kY + �k'i � 'kX + �"ik'ikX :Let us now estimate the termU i := k'i + �(f � (L'i)"i)kY :We have U i � k(I � �L)'ikY + �k(L'i)"i � L'ikY + �kfkY� 
k'ikY + �k(L'i)"i � L'ikY + �kfkY



100 Adaptive s
hemes for linear equations Chapter 3If we denote by M"i the number of degrees of freedom used to build (L'i)"i,then QM"i (L'i) 2 TM"i ;with #Ti("i) = M("i), provides a quasi-optimal M"i-term approximation ofL'i in the norm of X.It follows thatU i � 
k'ikY + �k(L'i)"i � QM"i (L')kY + �kQM"i (L'i)� L'ikY + �kfkY :Remarking that QM"i (L')� (L'i)"i 2 T2M"i allows to use Bernstein-typeinequality (3.8.4) whi
h giveskQM"i (L'i)� (L'i)"ikY . (2M"i)skQM"i (L'i)� (L'i)"ikX :Hen
e, by using Y -
ontinuity of the operator L, we haveU i . 
k'ikY + �(2M"i)sk(L'i)"i � QM"i (L'i)kX+�kQM"i (L'i)� L'ikY + �kfkY. 
k'ikY + �(2M"i)sk(L'i)"i � QM"i (L'i)kX+2�kL'ikY + �kfkY. 
k'ikY + �(2M"i)s�k(L'i)"i � L'ikX + kL'i � QM"i (L')kX�+2C�k'ikY + �kfkY :Now using assumption (S:2) and quasi-optimality of the nonlinear proje
torPN together with Ja
kson-type estimate (3.8.1) givesU i . 
k'ikY + �(2M"i)s"ik'ikX + �(2M"i)sM�s"i kL'ikY2C�k'ikY + �kfkY ;where C is su
h that kL'kY � Ck'kY , for all ' 2 Y .Thanks to Y -
ontinuity of L and to X-stability (3.8.20), we obtain the follow-ing inequalityU i . (
 + 2�C + �C 02s)k'ikY + �CX(2M"i)s"i + �kfkX ;where C 0 is su
h that kL'kX � C 0k'kX , for all ' 2 Y .
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tion 3.8. An abstra
t framework for Nonlinear Ri
hardson-type algorithm 101By using Lemma 3.8.2, we �nally obtaink'i + �(f � (L'i)"i)kY . (
 + 2�C + �C 02s)CY+�2sCXM s"i"i + �kfkX : (3.8.24)Now we go ba
k to the error estimate.It followsk'i+1 � 'kX . N�si+1n(
 + 2�C + �C 02s)CY + �2sCXM s"i"i + �kfkXo+�k'i � 'kX + �"ik'ikX :Finally, by iterating the above inequality and by using X-stability, weobtain the following error estimatek'i+1 � 'kX . iXk=0 �i�kN�sk+1n(
 + 2�C + �C 02s)CY + �2sCXM s"k"k + �kfkXo+�i+1k'0 � 'kX + �CX iXk=0 �i�k"k:Hen
e, as we assume that the strategy for L' is optimal, i.e."M s" � K;for all " > 0, the thesis follows.De�nition We say that the L-nonlinear Ri
hardson s
heme is optimal, ifit exhibits, after i + 1 iterations, an error redu
tion by a fa
tor �i+1.We now need to 
hoose the sequen
e fNig of degrees of freedom to be retainedat ea
h iteration of the s
heme and the sequen
e f"ig of the toleran
es re-lated to the approximation of L'i, in order to guarantee the optimality of thes
heme. To do this, we impose a sort of "balan
ing" between the terms of thesums in equation (3.8.25), in su
h a way that all 
ontributions to the error hasroughly the same order�i+1 � iXk=0 �i�k"k � iXk=0 �i�kN�sk+1�k;where �k := (
 + 2�C + �C 02s)CY + �2sCXM("k)s"k + �kfkX :



102 Adaptive s
hemes for linear equations Chapter 3Let us suppose that the approximation strategy for L' is optimal, then �k isuniformly bounded, otherwise it 
ould be unbounded.Sin
e iXk=0 �i�k"k = �i+1 iXk=0 ��k�1"k;the toleran
es "k should then be 
hosen in su
h a way that+1Xk=0 ��k�1"k < +1:It is not diÆ
ult to see that this holds for instan
e for the 
hoi
e"k = �k+1k log k :Analogously we will 
hoose Nk+1 su
h thatNk+1 = ��kk log k�k+1 �1=s :Remark 3.8.2: If the approximation strategy for L' is not optimal, i.e. f�kgkis possibly unbounded, then roughly speaking the 
hoi
e of Nk+1 will have to
ompensate, at ea
h iteration k, the loss of optimality. The result is a morequi
k growth of fNkg, than in the optimal 
ase and in a loss of the optimalityin redu
ing the �nal error.3.8.1 An appli
ation: the Three-Fields formulationNow we apply the above setting to the parti
ular 
ase of three-�eld non
on-forming domain de
omposition method.Assume that the strategy for 
omputing (S')" falls in the framework de-s
ribed in the previous se
tion. This basi
ally redu
es to saying that the typeof dis
retization spa
es used for approximating the Lagrange multiplier veri�esBernstein and Ja
kson inequalities of the type (3.8.2) and (3.8.4) and that theadaptive strategy guarantees a pres
ribed error on the Lagrange multiplier.This holds for instan
e if free-knot splines [74℄ are used to approximate the La-grange multiplier, together with a-posteriori error indi
ator proposed in [14℄.Then using Theorem 3.8.1 yields the following CorollaryCorollary 3.8.1: Let S : `2 ! `2 be the 1-dimensional linear operator asso-
iated to the three-�eld formulation. Assume there exists a � , with 0 < � < 2,
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tives 103su
h that S is an isomorphism from `� onto `� . Under the assumptions of Lem-mas 3.8.1 and 3.8.2, if the approximation strategy for S' is optimal, then theS-nonlinear Ri
hardson s
heme is `2-stable and the following error estimateholds k'i+1 � 'kX . iXk=0 �i�kN�sk+1 + �i+1k'0 � �kX + iXk=0 �i�k"k; (3.8.25)with � < 1 and all the 
onstants depending only on the initial data.3.9 Open problems and perspe
tivesNonlinear Ri
hardson type algorithms 
ould be applied in a quite wide 
lassof situations in
luding non-
onforming domain de
omposition methods, buta deeper study in this dire
tion, in
luding probing numeri
al experiments, isne
essary. Su
h nonlinear algorithms are attra
tive in the sense that the useris able to 
ontrol the number of degrees of freedom (and therefore the memorysize and 
omplexity) at ea
h iteration, but they also su�er from the followingdrawba
k 
ompared for example to the adaptive wavelet s
heme proposed in[31℄: all the parameters involved in the �ne tuning of the algorithm dependon the number � < 2, whi
h des
ribes the degree of sparsity of the solution inthe wavelet basis, in the sense that the 
oeÆ
ient sequen
e belongs to `�w, orequivalently the order of 
onvergen
e of the nonlinear proje
tion algorithm isN�s=d, with s=d = 1=� � 1=2. This means that in order to 
onverge with thisoptimal rate, the algorithm requires an a-priori knowledge on the smoothnessof the solution whi
h is somehow the opposite of adaptivity. Another drawba
kis that the range of the 
onvergen
e rate whi
h 
an be 
onsidered is limited bysome 
ondition ~� < � , where ~� 
ould be mu
h larger than the a
tual degreeof sparsity of the solution. This 
omes from the fa
t that all the proofs relyon a 
ontra
tion property of an operator in the `� norm, whi
h is known to be
ontra
tive in `2 and bounded in the `� norm for some arbitrarily small � , andtherefore 
ontra
tive in `� by interpolation, for � suÆ
iently 
lose to 2. Sin
ethere is no 
lear estimate on ~� , it 
ould well be that the rates of 
onvergen
ewhi
h 
an be a
hieved by the algorithm are quite de
eiving 
ompared to theoptimal rate of nonlinear approximation, ex
ept when the solution is not sosparse (in whi
h 
ase a uniform method would work as well).
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Chapter 4ADAPTIVE SCHEMES FORNONLINEAR EQUATIONS
"The realm of Sauron is ended!" said Gandalf. "The Ring-bearer has ful�lledhis Quest." And as the Captains gazed south to the Land of Mordor, itseemed to them that, bla
k against the pall of 
loud, there rose a huge shapeof shadow, impenetrable, lightning-
rowned, �lling all the sky. Enormous itreared above the world, and stret
hed out towards them a vast threateninghand, terrible but impotent: for even as it leaned over them, a great windtook it, and it was all blown away, and passed; and then a hush fell.(J.R.R. Tolkien, The Return of the King)4.1 Introdu
tionThe aim of this 
hapter is to show how it is possible to apply nonlinear waveletapproximation to design wavelet based adaptive s
hemes to solve a general
lass of nonlinear problems.The iterative methods, that we propose to �nd a solution to a given non-linear equation F (u) = 0;are Inexa
t Newton-type methods: given u0, un+1 is 
omputed as follows:un+1 = un + ~�n;with ~�n approximation to �n, where �n satis�es F 0(un)�n = �F (un) and F 0(un)is the Fr�e
het derivative of F at un.In designing su
h adaptive methods we follow the 1-dimensional "new ap-proa
h" (see Introdu
tion) already used to design adaptive methods for linearequation (Chapter 3). In the nonlinear setting su
h an approa
h reads asfollows: 105



106 Adaptive s
hemes for nonlinear equations Chapter 41. transform the initial nonlinear 
ontinuous problem F (u) = 0 into anequivalent 1-dimensional nonlinear problem F(u) = 0, whose unknownu is the in�nite ve
tor of wavelet 
oeÆ
ients of the solution.2. write down a 
onvergent Inexa
t Newton-type iterative s
heme for the1-dimensional problem.3. at ea
h iteration approximately (possibly adaptively) apply the involvedin�nite dimensional operators to �nite dimensional spa
es.Here, as already mentioned in the Introdu
tion, we don't fa
e the problem ofthe e�e
tive 
onstru
tion of the approximate appli
ation of nonlinear operatorsin wavelet 
oordinates [29℄. We rather 
onsider it as a "bla
k-box" strategyand we provide a re
ipe for a dynami
ally 
hoi
e, as the iteration pro
edureprogresses, of the involved toleran
es, in order to guarantee the eÆ
ien
y andthe 
onvergen
e of the resulting algorithm.4.2 Notations and Preliminary resultsLet 
 � R be a Lips
hitz domain. We will denote by (�; �) the L2(
) s
alarprodu
t. For sequen
es v 2 `�, we will denote by IaÆ (v) the ball of 
entre vand radius Æ in `� topology: IaÆ (v) = fu 2 `� : ku�vk`� � Æg. For fun
tionsv 2 Ha(
), we will denote by IaÆ (v) the ball of 
entre v and radius Æ in Ha(
)topology: IaÆ (v) = fu 2 Ha(
) : ku� vkHa(
) � Æg.Now let us assume we are given a 
ouple f �; � 2 � = [j�0�jg, f ~ �; � 2� = [j�0�jg (�j �nite dimensional) of biorthogonal bases for L2(
), satisfyingthe following properties:(W0) Any fun
tion f 2 L2(
) 
an be de
omposed in terms of either one of thetwo bases as follows:f =X�2�(f; ~ �) � =X�2�(f;  �) ~ �: (4.2.1)(W1) For any f 2 Bsp;q(
), 0 < s � S, 0 < p < 1, q > 0 the following normequivalen
e holds:kX� (f; ~ �) �kqBsp;q(
) 'Xj 2q(s+d( 12� 1p ))j0�X�2�j j(f; ~ �)jp1Aq=p : (4.2.2)
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tion 4.2. Notations and Preliminary results 107Remark 4.2.1: The splitting of the index set � as � = [j�0�j indi
ates thatthe basis fun
tion  � (and ~ �) are \living" at di�erent s
ales: � 2 �j ,supp( �) � 2�j � supp( ~ �).Remark 4.2.2: We remark that (W0) implies that the two bases are \biorthog-onal" in the following sense:( ~ �;  �0) = Æ�;�0 ; �; �0 2 � = [j�0�j: (4.2.3)Des
ribing how bases satisfying assumptions (W0)-(W1) 
an be 
onstru
tedis beyond the goals of this work. We want to stress out that biorthogonalwavelets fall in the 
lass here des
ribed [38℄, [32℄, [25℄ and therefore they willbe used throughout this 
hapter.In the setting of biorthogonal wavelets we denote by u� := (f; ~ �) the wavelet
oeÆ
ients in the expansion f =P�2�(f; ~ �) �. Hen
e the norm equivalen
e(4.2.2) for Besov spa
es Bsp;q rewrites as follows: for all 0 < s � S, 0 < p <1,q > 0: kX� u� �kqBsp;q(
) 'Xj 2q(s+d( 12� 1p ))j0�X�2�j ju�jp1Aq=p : (4.2.4)In parti
ular, sin
e Hs(
) = Bs2;2(
), from equivalen
e (4.2.4) we dedu
e thatfor all 0 < s � S: kXj X�2�j u�(2�js �)kHs(
) ' kuk`2: (4.2.5)where u = fu�g�.Now let us brie
y re
all some results about nonlinear approximation ina wavelet framework. In su
h a setting a given fun
tion u 2 L2(
), whosewavelet de
omposition is u =P� u� �, is approximated by a la
unary series:u is approximated by an element v belonging to the nonlinear spa
e�N = fv =X�2� v� � : v = fv�g�2� 2 �Ng; (4.2.6)
ontaining all the fun
tions of L2(
), whose wavelet 
oeÆ
ients belong to theset �N = fv 2 `2(�) : #f� : v� 6= 0g � Ng



108 Adaptive s
hemes for nonlinear equations Chapter 4of sequen
es with at most N elements di�erent from zero. The set �N 
ontainsthe fun
tions of L2(
), whi
h 
an be expressed as a linear 
ombination of atmost N wavelets. A nonlinear proje
torPN : L2(
)! �N
an be built as follows: given u =P� u� �, let us sort the sequen
e fju�jg�2�in de
reasing order. We denote fju�(k)jgk2N the 
oeÆ
ient of rank k:ju�(k)j � ju�(k+1)j; with k > 0:Hen
e the image PN (u) is de�ned by:PN (u) = NXn=1 u�(n) �(n);that is only the N greatest (in absolute value) 
oeÆ
ients of u are retained. Byabuse of notation we will also indi
ate by PN : `2 ! �N the operator asso
i-ating to the sequen
e u = fu�g, the 
oeÆ
ients of the fun
tion PN (P� u� �).The a

ura
y of the 
orresponding approximation is dire
tly related to `� reg-ularity of the sequen
e of 
oeÆ
ients of u, as stated by the following theorem[47℄, [48℄:Theorem 4.2.1: Let u = P�2� u� �. If u = fu�g� 2 `� , with � su
h that0 < � < 2, thenku� PNuk`2 . infw2�N ku� wk`2 . N�( 1�� 12 )kuk`� ;where the 
onstants in the bounds depend only on � .In parti
ular, if � is su
h that 1� = rd + 12 , using norm equivalen
e (4.2.4), weobtain kX� u� �kBr�;� (
) ' kuk`� (4.2.7)and from Theorem 4.2.1 we have that if u belongs to Br�;� (
), with � su
h that1� = rd + 12 , theninfw2�N ku� wkL2(
) . ku� PNukL2(
) . N�( 1�� 12 )kukBs�;�(
):In other words, on
e we normalise in L2(
) the wavelet basis f �g, the naturalfun
tional setting of nonlinear approximation in L2(
) is the s
ale of Besovspa
es Br�;� (
).



Se
tion 4.3. Inexa
t Newton methods 109Let us now 
onsider a res
aled version f � �g� of the wavelet basis f �g�,where � � = ��js �, for � 2 �j. If � is su
h that 1� = rd + 12 , from normequivalen
e (4.2.4) we obtain:kX� u� � �kBr+s�;� (
) ' kuk`� : (4.2.8)Applying now Theorem 4.2.1 and norm equivalen
e (4.2.5) for Sobolev spa
esto the normalised sequen
e u, we obtain the following result of nonlinear ap-proximation in Hs(
):Corollary 4.2.1: Let u 2 Bs+r�;� (
), with � su
h that 1=� = r=d+ 1=2, thenku� PNukHs(
) . infw2�N ku� wkHs(
) . N�( 1�� 12 )kukBs+r�;� (
);where the impli
it 
onstants in the bounds depend only on � .That is when we 
onsider nonlinear approximation in Hs(
) the natural fun
-tional setting is the s
ale of Besov spa
es Br+s�;� (
), where � is de�ned by therelation 1� = rd + 12 .4.3 Inexa
t Newton methodsLet 
 be a Lips
hitz domain in R and U be an open subset of the Sobolevspa
e Hs(
). Given a nonlinear fun
tional between Sobolev spa
es:F : U � Hs(
)! H t(
);we want to solve the nonlinear equationF (u) = 0:A 
lassi
al algorithm for solving nonlinear equations of type F (u) = 0 isNewton's method: given u0,ui+1 = ui + xi; with F 0(ui)xi = �F (ui);where F 0(ui) is the Fr�e
het derivative of F at ui.The method is attra
tive be
ause it 
onverges rapidly, whenever the initialguess u0 is suÆ
iently good. In [46℄, [85℄ a generalization of su
h method hasbeen 
onsidered:Inexa
t Newton methods:



110 Adaptive s
hemes for nonlinear equations Chapter 4begininput: u0for i = 0; 1; : : :�nd si whi
h satis�es F 0(ui)si = �F (ui) + riset ui+1 = ui + siendoutput: ~u = ui+1endin whi
h at ea
h iteration i the involved equation F 0(ui)w = �F (ui) is solvedonly approximately, be
ause of the presen
e of the perturbative term ri, whi
his possibly related to di�erent sour
es of error.In order to obtain the 
onvergen
e of a general inexa
t Newton method,a

ording to [85℄, we assume that F satis�es the following 
onditions:(A.1) There exists a solution u� 2 U of F (u) = 0, with IsÆ (u�) � U , for someÆ > 0.(A.2) On the ball IsÆ (u�) the fun
tional F is Fr�e
het di�erentiable and itsFr�e
het derivative F 0 is 
ontinuous.(A.3) At u� the Fr�e
het derivative of F is not singular.(A.4) There exist � 2 [0; 1℄ and K > 0 su
h that for all u; v 2 IsÆ (u�):k(F 0(u�))�1(F 0(u)� F 0(v))kHs(
)!Hs(
) � Kku� vk�Hs(
):It has been proved in [85℄ that under assumptions (A.1)-(A.4) on the regularityof F , if the perturbations ri are 
hosen in a suitable way, then the sequen
efuig 
onverges in Hs(
) to a solution u� of F (u) = 0, for any starting pointu0 2 U suÆ
iently 
lose to u�:Theorem 4.3.1: Let F : U � Hs(
) ! H t(
) satisfy assumptions (A.1)-(A.4) and ri su
h that:k(F 0(ui))�1rikHs(
)k(F 0(ui))�1F (ui)kHs(
) � � < 1; for all i: (4.3.1)



Se
tion 4.3. Inexa
t Newton methods 111There exists a Æs > 0 su
h that, if ku0� u�kHs(
) < Æs, then the sequen
e fuigof inexa
t Newton method 
onverges to u� in Hs(
) and satis�eskui+1 � u�kHs(
) � �ikui � u�kHs(
); (4.3.2)with �i � � = n� + (1 + �)��(u�)ku0 � u�k�Hs(
)(1 + �)(1� ��(u�)ku0 � u�k�Hs(
))o < 1:Let us de�ne��(u�) := supnkF 0(u�)�1(F 0(v)� F 0(w))kHs!Hskv � wk�Hs : v 6= w; v; w 2 Is�(u�)o:In order to prove Theorem 4.3.1 we need the following two results:Lemma 4.3.1: Let F : U � Hs(
) ! H t(
) satisfy assumptions (A.1)-(A.4). Then there exists a �, with � � Æ, su
h that F 0(u) is not singular forall u 2 IsÆ (u�) and the following inequality holdskF 0(u)�1(F 0(v)� F 0(w))kHs!Hs � ��(u�)1� ��(u�)ku� u�kHs kv � wk�Hs; (4.3.3)for all v; w 2 Is�(u�).Proof: Consider the 
ase � > 0 and � = 0 separately.If � > 0 and ku� u�kHs � ��(u�)�1=�, with u 2 IsÆ (u�), thenkI�F 0(u�)�1F 0(u)kHs!Hs = kF 0(u�)�1(F 0(u�)�F 0(u))kHs!Hs � ��(u�)ku�u�k�Hs < 1and thus the Neumann seriesF 0(u)�1 = 1Xn=0(I � F 0(u�)�1F 0(u))nF 0(u�)�1
onverges. Hen
e, asF 0(u)�1(F 0(v)� F 0(w)) = F 0(u�)�1(F 0(v)� F 0(w)) 1Xn=0[I � F 0(u�)�1F 0(u)℄n;inequality (4.3.3) follows from the de�nition of ��(u�).Now 
onsider the 
ase � = 0. By 
ontinuity of F 0 at u� it is 
lear that �0(u�)
an be made as small as desired by making Æ suÆ
iently small. Hen
e it followsthat for � suÆ
iently small and u 2 Is�(u�), we have kI�F 0(u�)�1F 0(u)kHs < 1,so the result on
e more follows as above.



112 Adaptive s
hemes for nonlinear equations Chapter 4Lemma 4.3.2: Let F : U � Hs(
) ! H t(
) satisfy assumptions (A.1)-(A.4). Then for any u 2 Is�(u�), where � is 
hosen a

ordingly with Lemma4.3.1, the following inequality holdskF 0(u)�1(F (u�)� F (u)� F 0(u)(u� � u))kHs � ��(u�)ku� u�k1+�Hs(1 + �)(1� ��(u�)ku� � uk�Hs)(4.3.4)Proof: De�ne H : Is�(u�) ! H t(
) by H(z) = F 0(u)�1F (z), where � is
hosen a

ordingly with Lemma 4.3.1. Then, by Lemma 4.3.1, we havekH 0(v)�H 0(w)kHs!Hs = kF 0(u)�1(F 0(v)� F 0(w))kHs!Hs� ��(u�)1� ��(u�)ku� u�kHs kv � wk�Hs; (4.3.5)for all v; w 2 Is�(u�).Now, by using [[72℄, Lemma 3.2.12℄ together with an appropriate de�nitionof the notion of integral [64℄, it followskF 0(u)�1(F (u�)� F (u)� F 0(u)(u� � u))kHs= kH(u�)�H(u)�H 0(u)(u� � u)kHs= 


Z 10 (H 0(u+ t(u� � u))�H 0(u))(u� � u)dt


Hs :Hen
e using inequality 4.3.5 yields


 Z 10 (H 0(u+ t(u� � u))�H 0(u))(u� � u)dt


Hs� Z 10 kH 0(u+ t(u� � u))�H 0(u)kHsku� � ukHsdt� ��(u�)1� ��(u�)ku� u�kHs Z 10 k(u+ t(u� � u))� uk�Hsku� � ukHsdt� ��(u�)1� ��(u�)ku� u�kHs ku� � uk�+1Hs Z 10 t�dt� ��(u�)ku� u�k�+1Hs(1 + �)(1� ��(u�)ku� � uk�Hs) : (4.3.6)
Proof of Theorem 4.3.1: Set Æs := �, where � is 
hosen a

ordingly toLemma 4.3.1. The proof is by indu
tion.



Se
tion 4.3. Inexa
t Newton methods 113Assume kui�u�kHs � ku0�u�kHs � Æs, for some i � 0. Then ui 2 IsÆs(u�),hen
e, by Lemma 4.3.1, F 0(ui)�1 exists. Thus the i-th stage of the inexa
tNewton method is well de�ned. Now si = F 0(ui)�1(�F (ui) + ri) and hen
eui+1 � u� = ui + F 0(ui)�1(�F (ui) + ri)� u�= F 0(ui)�1(F (u�)� F (ui)� F 0(ui)(u� � ui) + ri):Sin
e the following two inequalities holdkF 0(ui)rikHs � �kF 0(ui)�1F (ui)kHs ;kF 0(ui)�1F (ui)kHs � kF 0(ui)�1(F (u�)� F (ui)� F 0(ui))(u� � ui)kHs + kui � u�kHs ;we 
on
lude thatkui+1�u�kHs � �kui�u�kHs+(1+�)kF 0(ui)�1(F (u�)�F (ui)�F 0(ui))(u��ui)kHs:(4.3.7)Using inequality (4.3.4) yieldskui+1 � u�kHs � n� + (1 + �)��(u�)kui � u�k�Hs(1 + �)(1� ��(u�)kui � u�k�Hs)okui � u�kHs ; (4.3.8)and by 
hoosingÆs := minn�;�(1 + �)(1� �)2 + �(1� �) ��(u�)�1�1=�o;we have n� + (1+�)��(u�)kui�u�k�Hs(1+�)(1���(u�)kui�u�k�Hs)o < 1.Thus it follows kui+1 � u�kHs < kui � u�kHs ;whi
h yields by indu
tionkui+1 � u�kHs � n� + (1 + �)��(u�)ku0 � u�k�Hs(1 + �)(1� ��(u�)ku0 � u�k�Hs)okui � u�kHs ;for all i.Remark 4.3.1: From Theorem 4.3.1 one has that ui 2 IsÆs(u�) for all i.



114 Adaptive s
hemes for nonlinear equations Chapter 44.4 Nonlinear Newton4.4.1 The problemLet U be an open subset of the Sobolev spa
e Hs(
), s < S. Consider a mapbetween Sobolev spa
es:F : U � Hs(
)! F (U) � H t(
); t < S: (4.4.1)We want to �nd a solution u� to the nonlinear fun
tional equationF (u) = 0; (4.4.2)using an adaptive wavelet method based on an inexa
t Newton s
heme; thenwe assume that F satis�es assumptions (A.1)-(A.4).Moreover we assume that F , restri
ted to more regular spa
es, preserves su
hregularity:(A.5) For some r > 0 it holdsFU\Bs+r�;� (
) : U \ Bs+r�;� (
)! Bt+r�;� (
); s; t < S;where 0 < � < 2 is su
h that 1=� = r=d+ 1=2.Finally we assume that:(A.6) The solution u� belongs to U \ Bs+r�;� (
).Remark 4.4.1: From Corollary 4.2.1, as by assumption u� belongs to Bs+r�;� (
),it follows that ku� � PNu�kHs(
) . N�( 1�� 12 )ku�kBs+r�;� (
); (4.4.3)where PN is the non linear proje
tor whi
h retains the N greatest, in absolutevalue, wavelet 
oeÆ
ients of a given fun
tion.Fixed a number M of degrees of freedom, our aim is to provide an approxima-tion u�M 2 �M ;that is u�M is built using at most M wavelet fun
tions.We would like an approximation u�M behaving possibly as well as the bestM terms wavelet approximation PMu�.To a
hieve this goal, a

ording to the abstra
t approa
h des
ribed in Se
-tion 4.1, we �rst translate (4.4.2) in terms of wavelet 
oeÆ
ients, thus obtaining



Se
tion 4.4. Nonlinear Newton 115an1-dimensional problem: we de
ompose the involved fun
tions u and F (u),by 
hoosing two suitable res
aled versions f � �g and f ̂�g of the wavelet basisf �g: u 2 Hs(
); u =X� u� � �; with � � = 2�js �; (4.4.4)F (u) 2 H t(
); F (u) =X� f� ̂�; with  ̂� = 2�jt �; (4.4.5)and we build a dis
rete version F of the mapping F , a
ting on wavelet 
oeÆ-
ients as follows: F : u = fu�g ! F(u) := f = ff�g: (4.4.6)Thanks to norm equivalen
e (4.2.5) for Sobolev spa
es, the previous mapF results to be a mapping between `2 spa
es:F : D � `2 ! `2: (4.4.7)Moreover, using norm equivalen
e (4.2.8) for Besov spa
es, assumption (A.5)implies that F , restri
ted to a more regular spa
e, preserves su
h regularity:FD\`� : D \ `� ! `� ;with 0 < � < 2 su
h that 1=� = r=d+ 1=2.Then solving the1-dimensional problem F(u) = 0 is equivalent to solvingthe initial 
ontinuous problem F (u) = 0.Thanks to assumption (A.6) there exists u� 2 D \ `� su
h that F(u�) =0. Nonlinear approximation provides with a natural ben
hmark for adaptives
hemes; indeed if we knew u�, then it would follow, by using Theorem 4.2.1,that ku��PMu�k`2 .M�( 1�� 12 )ku�k`� . But u� is the unknown of our problem,so we do not have a

ess to PMu� exa
tly. Hen
e, given the number of degreesof freedom M , what we a
tually want is to design an adaptive s
heme whi
hbuilds an approximation u�M to u�, withu�M 2 �M ;su
h that u�M behaves almost as well as PMu�.4.4.2 The algorithmThe adaptive s
heme we propose here, namely Nonlinear Newton, is an Inex-a
t Newton-type method written for the1-dimensional problem F(u) = 0, in



116 Adaptive s
hemes for nonlinear equations Chapter 4whi
h, at ea
h iteration i, the approximation ui+1 is for
ed to belong to a non-linear spa
e �Ni+1 , that is it is for
ed to be built using at most Ni+1 degrees offreedom, where Ni+1 is 
hosen a

ordingly to the a

ura
y of the approxima-tion ui at the previous step. Moreover at ea
h iteration i two further sour
es ofinexa
tness are introdu
ed to deal with the problem of the approximate (pos-sibly adaptive) appli
ation of in�nite dimensional operators: �Ai will denote anapproximation to F 0i := F 0(ui) and �Fi an approximation to Fi := F(ui). Therate of these 
ompressions will be adapted, at ea
h iteration i, to the a

ura
y(and hen
e to the number Ni+1 of d.o.f.) of the approximation ui+1 that wewant to build. The method we propose is the following:Nonlinear Newtonbegininput: M;u0set i = 0repeat the following steps
ompute �Ai approximation to F 0i
ompute �Fi approximation to Fi
hoose Ni+1set ui+1 = PNi+1(ui � �A�1i �Fi)update i+ 1! iuntil Ni =Moutput: ~u = uiendwhere PNi+1 is the non linear wavelet proje
tor, whi
h for
es ui+1 to belong tothe non linear spa
e �Ni+1 .4.4.3 The analysis of the methodFirst of all we note that Nonlinear Newton 
an be rewritten as an Inexa
tNewton s
heme:begin



Se
tion 4.4. Nonlinear Newton 117input: M;u0set i = 0repeat the following steps
hoose the perturbative term ri�nd si whi
h satis�es F 0isi = �Fi + riset ui+1 = ui + siupdate i+ 1! iuntil Ni+1 =Mendwith ri = Fi �F 0i( �A�1i �Fi + (I � PNi+1)(ui � �A�1i �Fi)): (4.4.8)Indeed the following equalities hold:ui + si = ui + (F 0i)�1(�Fi + ri)= ui + (F 0i)�1(�Fi + Fi � F 0i( �A�1i �Fi + (I � PNi+1)(ui � �A�1i �Fi)))= ui � ( �A�1i �Fi + ui � �A�1i �Fi � PNi+1(ui � �A�1i �Fi))= PNi+1(ui � �A�1i �Fi):The perturbative term ri takes into a

ount, at step i, the di�erent sour
esof inexa
tness: the non linear proje
tor PNi+1 , the approximation �Ai and theapproximation �Fi. Step by step, we 
an tune su
h sour
es of inexa
tness inorder to build adaptively the approximate solution ui. Roughly speaking whenui is far from a solution of F (u) = 0, we 
an perform the step of our methodemploying high perturbative term (ri is large), using instead a lower pertur-bation when ui is nearer.More generally it is useless to build a bad approximation with a �ne reso-lution or a good approximation with a 
oarse resolution. In both 
ases we usea resolution whi
h is not of the same order as the approximation. The right
hoi
e, if we want to obtain an eÆ
ient s
heme, is to adapt the resolution tothe quality of the approximation, that is to its distan
e from the exa
t solu-tion, in su
h a way to redu
e the 
omputational 
ost, but not to loose at thesame time the 
onvergen
e.



118 Adaptive s
hemes for nonlinear equations Chapter 4The advantage of the reformulation of Nonlinear Newton as an inexa
tNewton s
heme is that we 
an use Theorem 4.3.1 to prove that NonlinearNewton 
onverges in `� . In order to apply Theorem 4.3.1 we need to assumein `� 
onditions on the regularity of F similar to (A.1)-(A.4):(B.1) There exists u� 2 D \ `� verifying F(u�) = 0, with I�Æ (u�) � D \ `� , forsome Æ > 0.(B.2) On the ball I�Æ (u�), the fun
tional F is Fr�e
het di�erentiable and itsFr�e
het derivative F 0 is 
ontinuous:F 0 2 C0(I�Æ (u�) � `� ;L(`� ; `� )):(B.3) At u� the Fr�e
het derivative F 0 is not singular.(B.4) There exist �� 2 [0; 1℄ and K� > 0 su
h that for all u; v 2 I�Æ (u�) itholds: kF 0(u�)�1(F 0(u)� F 0(v))k`�!`� � K�ku� vk��`� :We re
all that 
onvergen
e in `� , for � < 2, implies 
onvergen
e in `2. Howeverin general we 
an hope that 
onvergen
e in `2 is faster than 
onvergen
e in `� .Assumptions (A.2)-(A.4) on F translate into the following assumptions on F :(B.5) On the ball I2Æ (u�), the fun
tional F is Fr�e
het di�erentiable and itsFr�e
het derivative F 0 is 
ontinuous:F 0 2 C0(I2Æ (u�) � `2;L(`2; `2)):(B.6) At u� the Fr�e
het derivative F 0 is not singular.(B.7) There exist �2 2 [0; 1℄ and K2 > 0 su
h that for all u; v 2 I2Æ (u�) it holds:kF 0(u�)�1(F 0(u)�F 0(v))k`2!`2 � K2ku� vk�2`2 :Let us now 
olle
t the following two Lemmas: the �rst one, dealing with nonsingularity of the Fr�e
het derivative, is the analog of Lemma 4.3.1:Lemma 4.4.1: Let F be a mapping from D � `2 into `2, satisfying 
onditionsfrom (B.1) to (B.7), for some � < 2. Let � = �� 1minf�2;��g where� = maxn supfkF 0(u�)�1(F 0(u)� F 0(v))k`�!`�ku� vk��`� ; u 6= v; u; v 2 I�Æ�(u�)g;supfkF 0(u�)�1(F 0(u)�F 0(v))k`2!`2ku� vk�2`2 u 6= v; u; v 2 I2Æ�(u�)go:Then for all ui 2 I��(u�) (whi
h implies ui 2 I2�(u�)), it follows that F 0i :=F 0(ui) is not singular.



Se
tion 4.4. Nonlinear Newton 119The se
ond 
ontains a 
lassi
al result about perturbation of linear operators:Lemma 4.4.2: Let A� and C be two linear and 
ontinuous operators from `2into `2. Moreover suppose that A� and I + A��1C are not singular, then thefollowing inequality holds:k(A� + C)�1 �A�1k`2!`2 � k(A� + C)�1k`2!`2kA�1k`2!`2kCk`2!`2 (4.4.9)Proof: We have the following inequalities:k(A� + C)�1 �A�1k`2!`2= k(I +A�1C)�1A�1 �A�1k`2!`2= k[(I +A�1C)�1 � I℄A�1k`2!`2= k[(I +A�1C)�1 � (I +A�1C)�1(I +A�1C)℄A�1k`2!`2= k(I +A�1C)�1(I � I �A�1C)A�1k`2!`2� k(I +A�1C)�1A�1k`2!`2kCk`2!`2kA�1k`2!`2� k(A� + C)�1k`2!`2kCk`2!`2kA�1k`2!`2:Let us suppose that the approximation �A�1i to (F 0i)�1 has the following form:�A�1i := (F 0i + E(F 0i))�1;where E(F 0i) is a linear fun
tional representing the 
orre
tion added to F 0i atea
h iteration i.Now we are able to prove the following results:Lemma 4.4.3: Let F be a mapping from D � `2 into `2, satisfying 
onditionsfrom (B.1) to (B.7), for some � < 2. If ui belongs to the ball I��(u�) for all i,where � is 
hosen a

ordingly to Lemma 4.4.1 then, for some positive 
onstantsC0; C1; : : : ; C4; C 01; : : : ; C 04, the following inequalities hold:kFik`2 � C0; (4.4.10)C1 � kF 0ik`2!`2 � C2; (4.4.11)C 01 � kF 0ik`�!`� � C 02; (4.4.12)C3 � k(F 0i)�1k`2!`2 � C4; (4.4.13)C 03 � k(F 0i)�1k`�!`� � C 04: (4.4.14)Proof: Continuity of F yields immediately inequality (4.4.10). In parti
-ular it is not restri
tive to assume kFik`2 < 1, for all ui 2 I�Æ�(u�). In fa
t itsuÆ
es to 
onsider the `2 normalized fun
tion F(u) := 1C0F(u), whi
h veri�es



120 Adaptive s
hemes for nonlinear equations Chapter 4kF(ui)k`2 � 1, for all ui 2 I�Æ�(u�).From Lemma 4.4.1, i.e. F 0i is not singular for all ui 2 I�Æ�(u�) and from the
ontinuity of F 0 we dedu
e inequalities (4.4.11) and (4.4.12).Finally by using the 
ontinuity of the inverse of the Fr�e
het derivative andinequality k(F 0i)�1k � 1=kF 0ik, we obtain inequalities (4.4.13) and (4.4.14).Lemma 4.4.4: Under the same hypotheses of Lemma 4.4.3, let E(F 0i) 2L(I2�(u�) � `2; `2) \ L(I��(u�) � `� ; `�) satisfy:kE(F 0i)k`2!`2 � 12C4 ; (4.4.15)kE(F 0i)k`�!`� < 12C 04 ; (4.4.16)then the following inequalities hold:k �A�1i k`2!`2 � 2C4; (4.4.17)k �A�1i k`�!`� � 2C 04: (4.4.18)Moreover, denoting by hi := ui� u� the error 
ommitted at step i, there exists" > 0 depending on I��(u�) su
h that the following inequality holds:khik`2 � kFik`2=(C2 + "): (4.4.19)Proof: Using Lemma 4.4.2 yields:k �A�1i k`2!`2 = k(F 0i + E(F 0i))�1k`2!`2� k(F 0i + E(F 0i))�1 � (F 0i)�1k`2!`2 + k(F 0i)�1k`2!`2� k(F 0i + E(F 0i))�1k`2!`2k(F 0i)�1k`2!`2kE(F 0i)k`2!`2+k(F 0i)�1k`2!`2;from whi
h we dedu
e:k �A�1i k`2!`2 � k(F 0i)�1k`2!`21� kE(F 0i)k`2!`2k(F 0i)�1k`2!`2 :Using now inequalities (4.4.13) and (4.4.15), we obtain:k �A�1i k`2!`2 � 2C4:Similarly we obtain k �A�1i k`�!`� � 2C 04:



Se
tion 4.4. Nonlinear Newton 121Now let us set G(ui) = F(ui) � F 0(u�)ui. As G 0(u�) = 0 (the zero lineartransformation), then there exists " depending on I2Æ�(u�) su
h thatkG(ui)� G(u�)k`2 � "kui � u�k`2; (4.4.20)for all ui 2 I2Æ�(u�). By using inequality (4.4.20) we getkF(ui)� F(u�)k`2 = kF 0(u�)ui � F 0(u�)u� + G(ui)� G(u�)k`2� kF 0(u�)ui � F 0(u�)u�k`2 + kG(ui)� G(u�)k`2� kF 0(u�)k`2!`2kui � u�k`2 + "kui � u�k`2whi
h yields, as F(u�) = 0,khik`2 � kF(ui)k`2kF 0(u�)k`2!`2 + " � kF(ui)k`2C2 + " :
Now we are ready to prove the following Theorem 
on
erning the 
onvergen
eof the s
heme, where we denote by hi := ui � u� the error 
ommitted at stepi:Theorem 4.4.1: Let F be a mapping from D � `2 into `2, satisfying 
on-ditions from (B.1) to (B.7), for some � < 2. Assume E(F 0i) 2 L(I2Æ (u�) �`2; `2)\L(I�Æ (u�) � `� ; `� ). There exist a Æ� > 0 and 
onstants D1; D2; D3 andD4 su
h that if ku0 � u�k`� < Æ� and if, at ea
h iteration i, we 
hoose ordi-nately E(F 0i); �Fi and Ni+1 in order to ful�l the following 
onditions for some0 < � < � : kE(F 0i)k`2!`2 � D1; (4.4.21)kE(F 0i)k`�!`� � D2; (4.4.22)k �Fi � Fik`2 � D3kFik`2; k �Fi �Fik`� � D3kFik`� ; (4.4.23)Ni+1 � D4maxnNi�C( �Ai; �Fi; �)kuik`�kFik`� � ����� ;�C( �Ai; �Fi; �)kuik`�kFik`2 � 2�2�� o;(4.4.24)where C( �Ai; �Fi; �) and C( �Ai; �Fi; �) are expli
itly 
omputable 
onstants depend-ing on �Ai; �Fi and � (respe
tively on �), then the sequen
e fuig 
onverges to u�in `� and in `2 (with ui 2 I�Æ�(u�) � I2Æ�(u�)).



122 Adaptive s
hemes for nonlinear equations Chapter 4In order to prove Theorem 4.4.1, we need to re
all the following Lemma:Lemma 4.4.5: Let � su
h that 0 < � < � < 2. If ui 2 �Ni, then we havek(I � PNi+1)(ui � �A�1i �Fi)k`� � C( �Ai; �Fi; �)�Ni+1Ni �� ����� kuik`� (4.4.25)where C( �Ai; �Fi; �) is an expli
itly 
omputable 
onstant depending on �Ai; �Fiand an �.Proof: First we note that ui 2 �Ni , that is ui has at most Ni elementsdi�erent from zero, implies ui 2 `�, for all � > 0. By using (quasi) normequivalen
es on sequen
es with a �nite number of non zero elements, it followsthat kuik`� � N1=��1=�i kuik`� .Moreover, as ui � �A�1i �Fi 2 �Mi , for some Mi, we have that ui � �A�1i �Fi 2 `�.Finally, applying Theorem 4.2.1 to ui � �A�1i �Fi, we have:k(I � PNi+1)(ui � �A�1i �Fi)k`� � C�N�( 1�� 1� )i+1 kui � �A�1i �Fik`�� C�C�( �Ai; �Fi)N�( 1�� 1� )i+1 kuik`�� C( �Ai; �Fi; �)N�( 1�� 1� )i+1 N 1�� 1�i kuik`� ;(4.4.26)where we used the inequality kui � �A�1i �Fik`� � C�( �Ai; �Fi)kuik`� .Proof of Theorem 4.4.1:Thanks to assumptions from (B.1) to (B.4), we 
an use Theorem 4.3.1: re-
alling that ri = Fi � F 0i( �A�1i �Fi + (I � PNi+1)(ui � �A�1i �Fi)), if the following
ondition k(F 0i)�1rik`�k(F 0i)�1Fik`� � � < 1 (4.4.27)holds for all i, there exists a Æ� su
h that if ku0 � u�k`� < Æ� , then fuig 
on-verges to u� in `� and ui 2 I�Æ� (u�) for all i.



Se
tion 4.4. Nonlinear Newton 123Analogously thanks to assumptions from (B.5) to (B.7), we 
an use Theo-rem 4.3.1: if the following 
onditionk(F 0i)�1rik`2k(F 0i)�1Fik`2 � � < 1 (4.4.28)holds for all i, there exists a Æ2 su
h that if ku0 � u�k`2 < Æ2, then fuig 
on-verges to u� in `2 and ui 2 I2Æ2(u�) for all i.In parti
ular, if both (4.4.27) and (4.4.28) hold, 
hoosing Æ� = minfÆ� ; Æ2g, ifthe initial guess u0 ful�ls ku0 � u�k`� < Æ�, whi
h implies ku0 � u�k`2 < Æ�,then fuig 
onverges to u� in `2 and in `� . As a 
onsequen
e we also have thatui 2 I�Æ�(u�) � I2Æ�(u�) for all i.Hen
e, in order to prove 
onvergen
e in `� and in `2, we only need to showthat inequalities (4.4.27) and (4.4.28) are ful�lled, if we 
hoose�A�1i := (F 0i + E(F 0i))�1; �Fi; and Ni+1satisfying 
onditions (4.4.21)-(4.4.24), for suitable 
hoi
es of the 
onstantsD1; D2; D3 and D4.Let us now remark that the following inequalities hold:k(F 0i)�1rik`�k(F 0i)�1Fik`� � k(I � �A�1i F 0i)((F 0i)�1Fi)k`�k(F 0i)�1Fik`�| {z }+ k �A�1i ( �Fi �Fi)k`�k(F 0i)�1Fik`�| {z }T A+ k(I � PNi+1)(ui � �A�1i �Fi)k`�k(F 0i)�1Fik`�| {z };Uand k(F 0i)�1rik`2k(F 0i)�1Fik`2 � k(I � �A�1i F 0i)((F 0i)�1Fi)k`2k(F 0i)�1Fik`2| {z }+ k �A�1i ( �Fi �Fi)k`2k(F 0i)�1Fik`2| {z }T W+ k(I � PNi+1)(ui � �A�1i �Fi)k`2k(F 0i)�1Fik`2| {z } :OWe only need to prove that, for suitable 
hoi
es of the 
onstants D1; D2; D3and D4, under assumptions (4.4.21)-(4.4.24), ea
h term on the right-hand side



124 Adaptive s
hemes for nonlinear equations Chapter 4of the above two inequalities is smaller or equal than �3 .First we re
all that the following inequalities hold:k(F 0i)�1Fik`� � 1kF 0ik`�!`� kFik`� ; (4.4.29)k(F 0i)�1Fik`2 � 1kF 0ik`2!`2 kFik`2 : (4.4.30)Let us now 
onsider T := k(I � �A�1i F 0i)((F 0i)�1Fi)k`2k(F 0i)�1Fik`2� kI � �A�1i F 0ik`2!`2� k �A�1i k`2!`2kE(F 0i)k`2!`2where we used the fa
t that I � �A�1i F 0i = �A�1i ( �Ai �F 0i) = �A�1i E(F 0i):From assumption (4.4.21), i.e kE(F 0i)k`2!`2 � D1, we haveT � D1k �A�1i k`2!`2:If D1 veri�es D1 � 12C4 ;then 
ondition (4.4.21) implies that inequality (4.4.15) is ful�lled and we 
anuse inequality (4.4.17), whi
h yieldsT � 2C4D1:Moreover if D1 is 
hosen to also satisfy 2C4D1 � �3 , i.e.D1 � minf 12C4 ; �6C4g;then T � �3 :Analogously we have thatT := k(I � �A�1i F 0i)((F 0i)�1Fi)k`�k(F 0i)�1Fik`�� kI � �A�1i F 0ik`�!`�� k �A�1i k`�!`�kE(F 0i)k`�!`� :



Se
tion 4.4. Nonlinear Newton 125If D2 veri�es D2 � 12C04 then assumption (4.4.22) implies that inequality(4.4.16) is satis�ed and we 
an use inequality (4.4.18) obtaining T � 2C 04D2.Moreover if D2 is 
hosen to also satisfy 2C 04D2 � �3 , i.e.D2 � minf 12C 04 ; �6C 04g;then T � �3 :Now we 
onsider W := k �A�1i ( �Fi �Fi)k`2k(F 0i)�1Fik`2� k �A�1i k`2!`2k �Fi � Fik`2k(F 0i)�1Fik`2 :Using inequalities (4.4.17) and (4.4.30) yieldsW � 2C4k �Fi � Fik`2k(F 0i)�1Fik`2� 2C4kF 0ik`2!`2k �Fi � Fik`2kFik`2 :Now thanks to inequality (4.4.11), i.e. kF 0ik`2!`2 � C2, we haveW � 2C4C2k �Fi �Fik`2kFik`2 :From assumption (4.4.23), i.e. k �Fi � Fik`2 � D3kFik`2 , we obtainW � 2C4C2D3:If D3 is 
hosen su
h that 2C4C2D3 � �3 , i.e.D3 � �6C4C2 ;then W � �3 :Analogously we have thatA := k �A�1i ( �Fi � Fi)k`�k(F 0i)�1Fik`�� k �A�1i k`�!`�k �Fi � Fik`�k(F 0i)�1Fik`� :



126 Adaptive s
hemes for nonlinear equations Chapter 4Using inequalities (4.4.18) and (4.4.29) yieldsA � 2C 04k �Fi � Fik`�k(F 0i)�1Fik`2� 2C 04kF 0ik`�!`�k �Fi � Fik`�kFik`� :Now thanks to inequality (4.4.12) we haveA � 2C 04C 02k �Fi �Fik`�kFik`� :From assumption (4.4.23), i.e. k �Fi �Fik`� � D3kFik`� , we obtainA � 2C 04C 02D3:If D3 is also 
hosen su
h that 2C 04C 02D3 � �3 , i.e.D3 � minf �6C 04C 02 ; �6C4C2g;then A � �3 :Now in order to prove 
onvergen
e in `2 and in `� , we only need to estimatethe last two terms: O and U .By using Theorem 4.2.1, as ui � �A�1i �Fi 2 `� , we haveO := k(I � PNi+1)(ui � �A�1i �Fi)k`2k(F 0i)�1Fik`2� C�N� 2��2�i+1 kui � �A�1i �Fik`�k(F 0i)�1Fik`2 :Using inequalities (4.4.30) and (4.4.11) yieldsO � C�N� 2��2�i+1 kF 0ik`2!`2kui � �A�1i �Fik`�kFik`2� C2C�N� 2��2�i+1 kui � �A�1i �Fik`�kFik`2� C2C�C� ( �Ai; �Fi)N� 2��2�i+1 kuik`�kFik`2 ;� C2C( �Ai; �Fi; �)N� 2��2�i+1 kuik`�kFik`2 ;



Se
tion 4.4. Nonlinear Newton 127where we used kui � �A�1i �Fik`� � C� ( �Ai; �Fi)kuik`� :From assumption (4.4.24), we have in parti
ularNi+1 � D4 �C( �Ai; �Fi;�)kuik`�kFik`2 � 2�2�� .Hen
e O � C2D� 2��2�4 :If D4 is 
hosen su
h that C2D� 2��2�4 � �3 , i.e.D4 � �3C2� � 2�2�� ;then O � �3 :Finally, by using Lemma 4.4.5, we haveU := k(I � PNi+1)(ui � �A�1i �Fi)k`�k(F 0i)�1Fik`�� C�C�( �Ai; �Fi)N �����i N� �����i+1 kuik`�k(F 0i)�1Fik`� :Using inequalities (4.4.29) and (4.4.12) yieldsU � C( �Ai; �Fi; �)N �����i N� �����i+1 kF 0ik`�!`�kuik`�kFik`�� C 02C( �Ai; �Fi; �)N �����i N� �����i+1 kuik`�kFik`� :From assumption (4.4.24) we have in parti
ularNi+1 � D4Ni �C( �Ai; �Fi;�)kuik`�kFik`� � ����� .Hen
e U � C 02D� �����4 :If D4 is 
hosen su
h that C 02D� �����4 , i.e.D4 � �3C 02� � ����� ;then U � �3 :Hen
e, if we 
hoose D4 � maxn�3C2� � 2�2�� ;�3C 02� � �����o;



128 Adaptive s
hemes for nonlinear equations Chapter 4then we have O � �3 and U � �3 .Hen
e we proved that ifD1 � �6C4 ;D2 � �6C 04 ;D3 � minn �6C4C2 ; �6C 04C 02o;D4 � maxn�3C2� � 2�2�� ;�3C 02� � �����o;then k(F 0i)�1rik`�k(F 0i)�1Fik`� � T +A+ U � �;and k(F 0i)�1rik`2k(F 0i)�1Fik`2 � T +W +O � �;with � < 1. Thus, by virtue of Theorem 4.3.1, we proved 
onvergen
e in `�and in `2.Remark 4.4.2: Let us 
onsider 
ondition (4.4.24):Ni+1 � D4maxnNi�C( �Ai; �Fi; �)kuik`�kFik`� � ����� ;�C( �Ai; �Fi; �)kuik`�kFik`2 � 2�2�� o:Convergen
e in `� guarantees that kuik`� is uniformly bounded; in this way the
hoi
e of Ni+1 is essentially driven by Ni and 1kFik . 2We now prove the 
laimed result of quadrati
 
onvergen
e of the s
heme, undersome slightly stronger assumptions on the 
hoi
e of E(F 0i); �Ai and Ni+1:Theorem 4.4.2: Let F be a mapping from D � `2 into `2, satisfying 
on-ditions from (B.1) to (B.7), for some � < 2. Assume E(F 0i) 2 L(I2Æ (u�) �`2; `2) \ L(I�Æ (u�) � `� ; `� ). There exist a Æ� > 0 and 
onstants D1; D2; D3and D4, su
h that if ku0 � u�k`� < Æ� and if, at ea
h iteration i, we 
hooseordinately E(F 0i); �Fi and Ni+1 in order to ful�l the following 
onditions forsome 0 < � < � : kE(F 0i)k`2!`2 � D1kFik`2; (4.4.31)



Se
tion 4.4. Nonlinear Newton 129kE(F 0i)k`�!`� � D2; (4.4.32)k �Fi � Fik`2 � D3kFik2̀2; k �Fi �Fik`� � D3kFik`� ; (4.4.33)Ni+1 � D4maxnNi�C( �Ai; �Fi; �)kuik`�kFik`� � ����� ;�C( �Ai; �Fi; �)kuik`�kFik2̀2 � 2�2�� o;(4.4.34)where C( �Ai; �Fi; �) and C( �Ai; �Fi; �) are expli
itly 
omputable 
onstants depend-ing only on �Ai; �Fi and on � (respe
tively on �), then the sequen
e fuig 
on-verges quadrati
ally to u� in `2:khi+1k`2 � khik2̀2 for all i 2 N : (4.4.35)Proof: As it is not restri
tive to assume kFik`2 � C0 < 1, for all ui 2 I�Æ�(u�),trivially we have kFik2̀2 � kFik`2. Now it is simple to see that 
hoosingD1; D2; D3 and D4 a

ording to the proof of Theorem 4.4.1, yields 
onver-gen
e in `� and `2. By the way we remark that with su
h 
hoi
es of the
onstants we 
an use inequalities (4.4.17) and (4.4.18).If in addition we impose some further 
onditions on the 
hoi
e ofD1; D2; D3and D4 we will �nally obtain quadrati
 
onvergen
e in `2.Let us now introdu
e the following notation:�hi = �ui � u� with �ui+1 = ui � (F 0i)�1Fi;that is �ui+1 is the result of the appli
ation of a step of the 
lassi
al Newtonmethod to ui.From now on, we 
hoose Æ� = minfÆ2; Æ� ; �g, where � is 
hosen a

ording toLemma 4.4.1. It follows that F 0i := F 0(ui) is not singular for all ui 2 I�Æ�(u�).Moreover, as by hypothesis the operator E(F 0i) belongs to L(I2Æ�(u�) � `2; `2)and it is 
hosen su
h that kE(F 0i)k`2!`2 < 1=k(F 0i)�1k`2!`2, we also have thatI + (F 0i)�1E(F 0i) is not singular for all ui 2 I2Æ�(u�).Hen
e we 
an apply Lemma 4.4.2 with A� = F 0i and C = E(F 0i), obtainingthe following inequality:k(F 0i + E(F 0i))�1 � (F 0i)�1k`2!`2� k(F 0i + E(F 0i))�1k`2!`2k(F 0i)�1k`2!`2kE(F 0i)k`2!`2:(4.4.36)



130 Adaptive s
hemes for nonlinear equations Chapter 4As �A�1i = (F 0i + E(F 0i))�1 and re
alling (4.4.8), we have:hi+1 = hi � (F 0i)�1Fi + (F 0i)�1ri= hi � (F 0i)�1Fi + (F 0i)�1fFi � F 0i[ �A�1i �Fi + (I � PNi+1)(ui � �A�1i �Fi)℄g= hi � (F 0i)�1 �Fi + [(F 0i)�1Fi � �A�1i �Fi℄� (I � PNi+1)(ui � �A�1i �Fi)= hi � (F 0i)�1Fi + [ �A�1i (Fi � �Fi) + ((F 0i)�1 � �A�1i )Fi℄�(I � PNi+1)(ui � �A�1i �Fi);whi
h, taking `2 norm and using inequality (4.4.36), yields:khi+1k`2 � khi � (F 0i)�1Fik`2 + k �A�1i (Fi � �Fi)k`2 + k((F 0i)�1 � �A�1i )Fik`2+k(I � PNi+1)(ui � �A�1i �Fi)k`2� k�hi+1k`2 + k �A�1i k`2!`2kFi � �Fik`2 + k(F 0i)�1 � �A�1i k`2!`2kFik`2+k(I � PNi+1)(ui � �A�1i �Fi)k`2� k�hi+1k`2| {z }+ k �A�1i k`2!`2kFi � �Fik`2| {z }Q U+ k �A�1i k`2!`2k(F 0i)�1k`2!`2kE(F 0i)k`2!`2kFik`2| {z }A+ k(I � PNi+1)(ui � �A�1i �Fi)k`2| {z } :DIn order to obtain quadrati
 
onvergen
e, we only need to prove that underassumptions (4.4.31)-(4.4.34), ea
h term on the right-hand side of the aboveinequality is smaller or equal than 14khik2̀2.First we remark that Q := k�hi+1k`2 � 14khik2̀2holds thanks to 
lassi
al results on quadrati
 
onvergen
e of Newton method,for a starting point suÆ
iently near to u�.Consider now U := k �A�1i k`2!`2kFi � �Fik`2 :Using inequality (4.4.17) yieldsU � 2C4kFi � �Fik`2:From assumption (4.4.33), i.e. k �Fi �Fik`2 � D3kFik2̀2 , we have thatU � 2C4D3kFik2̀2:



Se
tion 4.4. Nonlinear Newton 131By using inequality (4.4.19), i.e. khik`2 � kFik`2=(C2 + "), we obtainU � 2C4D3(C2 + ")2khik2̀2:If D3 is 
hosen su
h that 2C4D3(C2 + ")2 � 14 , i.e.D3 � 18C4(C2 + ")2 ;then U � 14khik2̀2:Now let us estimateA := k �A�1i k`2!`2k(F 0i)�1k`2!`2kE(F 0i)k`2!`2kFik`2:Using inequalities (4.4.17) and (4.4.11) yieldsA � 2C24kE(F 0i)k`2!`2kFik`2:From assumption (4.4.31), i.e. kE(F 0i)k`2!`2 � D1kFik`2, we obtainA � 2C24D1kFik2̀2 ;whi
h yields, by using inequality (4.4.19),A � 2C24D1(C2 + ")2khik2̀2:If D1 is 
hosen su
h that 2C24D1(C2 + ")2 � 14 , i.e.D1 � 18C24(C2 + ")2 ;then A � 14khik2̀2 :Finally we 
onsider D := k(I � PNi+1)(ui � �A�1i �Fi)k`2� C�N� 2��2�i+1 kui � �A�1i �Fik`�� C( �Ai; �Fi; �)N� 2��2�i+1 kuik`� : (4.4.37)From assumption (4.4.34), we have Ni+1 � D4 �C( �Ai; �Fi;�)kuik`�kFik2̀2 � 2�2�� . Hen
eD � D� 2��2�4 kFik2̀2:



132 Adaptive s
hemes for nonlinear equations Chapter 4By using inequality (4.4.19), we haveD � D� 2��2�4 (C2 + ")2khi+1k2̀2 :If D4 is 
hosen su
h that D� 2��2�4 (C2 + ")2 � 14 , i.e.D4 � �4(C2 + ")2� 2�2�� ;then D � 14khik2̀2 :Hen
e we proved khi+1k`2 � Q+ U + A+D � khik2̀2 : (4.4.38)
Remark 4.4.3: Given the number of degrees of freedom M , what we a
tuallyobtain is an approximation u�M to u�, whi
h satis�es, thanks to (4.4.37) and(4.4.38): ku� � u�Mk`2 � 34khik2̀2 + C( �Ai; �Fi; �)M�( 1�� 12 )ku�Mk`� :Heuristi
ally this means that we are further, but not so far, thanks to theabove result of 
onvergen
e, from the natural ben
hmark provided by non linearapproximation: ku� � PMu�k`2 � C�M�( 1�� 12 )ku�k`� :Remark 4.4.4: Conditions (4.4.31)-(4.4.34) are not 
ompletely reliable froma 
omputational point of view, be
ause they imply the knowledge of quantities,like kFik, kFi� �Fik or kE(F 0i)k, that we do not want to 
ompute at any stepsof our algorithm. Hen
e, given ui, we need a strategy for building �Fi and�Ai, whi
h provides estimates for kFik, kFi � �Fik and kE(F 0i)k involving onlyavailable quantities su
h as �Fi and �Ai. Results in this dire
tion 
an be foundin [30℄.4.5 Open problems and perspe
tivesWe proposed an extension of the Nonlinear Ri
hardson algorithm to nonlinearproblems. The Ri
hardson s
heme has been repla
ed by an inexa
t Newton



Se
tion 4.5. Open problems and perspe
tives 133s
heme, where the "inexa
tness" 
omes both from the approximate appli
a-tion of the involved operators (this issue is somehow taken for granted: it isassumed that there is a pro
edure whi
h applies these operators up to anypres
ribed a

ura
y) and from the thresholding error 
oming from the appli-
ation of the nonlinear proje
tor. Under some regularity assumptions on thenonlinear operators, results similar to the linear 
ase are obtained. What it isindeed ne
essary for a deeper understanding of the reliability of the methodare 
on
rete examples of nonlinear problems to be treated by su
h an approa
hand numeri
al tests.
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Chapter 5ADAPTIVITY & WAVELETPACKETS
"Well, this is the end, Sam Gamgee," said a voi
e by his side. And there wasFrodo, pale and worn, and yet himself again; and in his eyes there was pea
enow, neither strain of will, nor madness, nor any fear. His burden was takenaway. "Yes," said Frodo. "But do you remember Gandalf 's words: EvenGollum may have something yet to do? So let us forgive him! For the Questis a
hieved, and now all is over. I am glad you are here with me. Here at theend of all things, Sam." (J.R.R. Tolkien, The Return of the King)5.1 Introdu
tionIn this 
hapter we introdu
e two spa
e-frequen
y adaptive strategies for thenumeri
al approximation of the solutions of quantum hydrodynami
 (QHD)model for semi
ondu
tors, based respe
tively on wavelets and wavelet pa
k-ets. The two strategies have been 
ompared in [18℄ on a test 
ase, and waveletpa
kets perform better in approximating with fewer degrees of freedom thehigher frequen
y dispersive os
illations of the solution.Motivated by su
h a result, we want to provide a way of optimizing waveletpa
kets adaptive s
hemes based on Galerkin dis
retizations, by extending thete
hniques of wavelet 
ompression of 
ertain operators to the 
ase in whi
hsu
h operators are represented in terms of wavelet pa
kets. The essentialobservation is that 
ertain operators have an almost sparse representation inwavelet 
oordinates thanks to the good properties of lo
alization both in spa
eand in frequen
y of wavelet bases. Thus dis
arding all entries below a 
ertainthreshold will be then give rise to a sparse matrix that 
an be further pro
essedby eÆ
ient linear algebra tools.As wavelet pa
kets provide better properties of lo
alization both in spa
eand in frequen
y, the representation of su
h operators in terms of wavelet135



136 Adaptivity & Wavelet Pa
kets Chapter 5pa
kets should be in prin
iple more sparse than in the wavelet 
ase. Thus awavelet-like 
ompression te
hniques should give rise to a mu
h more sparsematrix, possibly redu
ing the 
omputational 
ost in solving the linear systemsresulting from the Galerkin dis
retization of the problem.5.2 Motivation: the QHD EquationsThe quantum hydrodynami
 model (QHD) for semi
ondu
tors has been re-
ently introdu
ed (see e.g. [2℄, [51℄, [52℄) in order to des
ribe with ma
ros
opi

uid-type unknowns phenomena, su
h as negative di�erential resistan
e ina resonant tunneling diode, whi
h are due to quantum e�e
ts and 
annotbe modeled with 
lassi
al or semi{
lassi
al des
riptions. Mathemati
ally, theQHD system is a dispersive regularization of the so{
alled hydrodynami
 equa-tions (HD) for semi
ondu
tors (a hyperboli
 system of 
onservation laws 
ou-pled self{
onsistently with the Poisson equation). As usual in ma
ros
opi
semi
ondu
tor models, the ele
tron position density or some of its derivativesmay present strong variation or even blow up in some points. Moreover, thedispersive 
hara
ter of the QHD system implies that the solution may de-velop high frequen
y os
illations, whi
h are lo
alized in regions not a prioriknown. Therefore, numeri
al simulations of the QHD system with uniformdis
retizations require an extremely high number of grid points, also when the\pathology" of the solution, whi
h enfor
es the mesh size, is lo
alized in asmall per
entage of the simulation domain. This leads to unne
essarily time
onsuming 
omputations.Due to the possible dispersive os
illations, an eÆ
ient approximation de-mands the use of a dis
retization where not only the spatial grid, but also thefrequen
y distribution is adaptively adjusted to the behavior of the solution.One way of a
hieving su
h a goal is to use bases with good lo
alization bothin spa
e and frequen
y. Wavelet type bases, whi
h display su
h a property,have already been su

essfully used in the design of eÆ
ient adaptive s
hemesin various appli
ation �elds (see e.g. [16℄, [12℄, [11℄, [28℄, [50℄, [58℄, [67℄, [63℄).Due to their 
hara
teristi
s, the de�nition of 
riteria for driving the adaptivepro
edure (re�ning and 
oarsening) both in spa
e and in frequen
y is quite nat-ural. In parti
ular, wavelet based adaptive algorithms have been introdu
ed in([18℄) for the semi
ondu
tor hydrodynami
 model, where, after performing adi�usive regularization, the adaptive strategy is aimed at well approximatingsolutions with steep gradients.Here we re
all [18℄ the feasibility of an adaptive algorithm based on waveletsand wavelet pa
kets for the QHD model. Wavelet pa
kets have better fre-quen
y lo
alization properties and 
onsequently they are superior to wavelets



Se
tion 5.2. Motivation: the QHD Equations 137in drasti
ally diminishing the required number of degrees of freedom for wellapproximating solutions whi
h exhibit high frequen
y os
illations.We 
onsider the isothermal, stationary, one dimensional quantum hydro-dynami
 (QHD) equations in the domain (0; 1)8>>>>>><>>>>>>:
J"x = 0;�(J")2u" + u"�x + u"Vx � "22 u"�pu"xxpu" �x = �J"� ;��2V = u" � C(x): (P")Here u" (whi
h we will also at times denote by u(")) denotes the ele
trondensity, J" the 
urrent density, V the ele
trostati
 potential. The parameter" is the s
aled Plan
k 
onstant, the fun
tion C(x) represents the (pres
ribed)doping pro�le of the semi
ondu
tor devi
e, the parameter � is the s
aled Debyelength and � is the relaxation time.As pointed out before, equations (P") are a dispersive regularization of the
lassi
al isothermal hydrodynami
 (HD) equations8>>>>>><>>>>>>:

Jx = 0;�J2u + u�x + uVx = �J� ;��2�V = u� C(x);and, in the formal limit, the QHD equations tend to the HD equations. How-ever, due to the dispersive term and the non-linearity, if the HD system exhibitsa sho
k dis
ontinuity, the solution of the QHD system is expe
ted to developdispersive os
illations, whi
h are not damped as " goes to zero. In that 
aseonly a weak 
onvergen
e 
an hold as " goes to zero and the limiting system isnot expe
ted to be the HD system. In [75℄ a numeri
al study shows eviden
eof this fa
t. A 
omplete theory on the small dispersion limit for the QHDsystem is still an open problem. We refer to [53℄, [54℄, [57℄ for partial answersin spe
ial 
ases.Figures 1{3 present the solution of (P") for di�erent values of " (" = 0:01," = 0:005 and " = 0:0026, resp.). The pi
tures 
learly show that the os
illationamplitude and lo
ation does not 
hange as " de
reases. Changes in " a�e
tonly the os
illation frequen
y, whi
h is about the double when " is halved.An eÆ
ient numeri
al s
heme to solve problem (P") when dispersive os
il-lations o

ur is a 
hallenging issue. The os
illations must be well resolved in
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Figure 1. Solution of (P") for " = :01 (� = 0:1, � = 1=8 and V0 = 6:5, with dopingpro�le C as in �gure 6).
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Figure 2. Solution of (P") for " = :005 (� = 0:1, � = 1=8 and V0 = 6:5, withdoping pro�le C as in �gure 6).
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Figure 3. Solution of (P") for " = :0026 (� = 0:1, � = 1=8 and V0 = 6:5, withdoping pro�le C as in �gure 6).
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kets Chapter 5order to keep the 
orre
t limiting behavior (for " �! 0) and it is 
lear that adis
retization on a uniform grid requires too many degrees of freedom.We point out that due to the presen
e of the dispersive regularization, nospe
ial treatment is required to approximate the 
onve
tion terms in (P"). Onthe 
ontrary, the use of upwind{type s
hemes would introdu
e spurious numer-i
al damping of the os
illations and, 
onsequently, further strong restri
tionon the mesh size in order to des
ribe 
orre
tly the os
illations. We refer to[75℄ for a dis
ussion on this issue.5.3 Adaptive Solution of QHD EquationsProblem (P") is highly non{linear, due to the non{linear terms in the se
ondequation of (P") and to the strong 
oupling to the Poisson equation. A 
ontin-uation pro
edure in the parameter " is an eÆ
ient strategy to deal with su
hproblems and it 
an be 
oupled, for instan
e, to a (possibly damped) Newtonalgorithm for solving the non{linear system for a given " of the 
ontinuationpro
edure. More pre
isely, for solving problem (P"), with a pres
ribed �", wede�ne a �nite de
reasing sequen
e f"n; n = 0; :::; Ng with "0 � 1 and "N = �",and we solve the sequen
e of problems (P"n). For the solution of problem(P"n+1), the knowledge of the solution of (P"n) is exploited in several ways forenhan
ing the eÆ
ien
y of the algorithm, for instan
e it 
an be used as aninitial guess for the Newton s
heme. This pro
edure has been used in [75℄for solving (P"), there dis
retized with a �nite di�eren
e s
heme on a uniformgrid.Here, we are interested in designing and testing some strategies for takingadvantage of the knowledge of the 
omputed solution of (P"n) for redu
ingthe number of degrees of freedom to be used for numeri
ally solving problem(P"n+1). We aim at an algorithm of the following form.� Choose a 
lass B whose elements B are the L2-orthonormal bases of �nitedimensional subspa
es VB of L2:B = fB : B �nite orthonormal basis of VB =< B >span� L2g: (5.3.1)We assume that the basis fun
tions 
onsidered are suÆ
iently smooth.� Compute an approximation u0 to the solution u("0) of equations (P") for" = "0 using a 
oarse uniform grid. This is possible sin
e for " � 1 thesolution of (P") is smooth.� Given the approximation un to the solution u("n) of (P"n), an approxi-mation un+1 to the solution u("n+1) of (P"n+1) is obtained as follows:
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t a basis Bn+1 2 B, as small as possible, wellsuited for approximating u("n+1).{ Compute un+1 in Vn+1 =< Bn+1 >span approximate solution of(P"n+1), by a suitable numeri
al method (for instan
e, Galerkin ap-proximation of (P"n+1)).Due to the onset of high frequen
y os
illations in a possible large (thoughlo
alized) portion of the domain, in order to be able to approximate the so-lutions of (P") with few degrees of freedom, it is not enough to work withmethods that are adaptive only with respe
t to the spa
e. We will then ratherwork with basis fun
tions whi
h display good lo
alization properties also inthe frequen
y domain. In parti
ular we will 
onsider bases B whose elementswill be phase atoms. Phase atoms ([84℄) are smooth fun
tions whi
h are welllo
alized in both position and momentum in the sense of quantum me
hani
s.More pre
isely, a phase atom  needs to satisfy the following properties.� Finite Energy. Possibly after a re-normalization, it holdsk kL2 = 1:� Smoothness and de
ay. Both  and  ̂ are smooth ( ̂ being the Fouriertransform of  ).� Finite position and momentum.x0 := Z xj (x)j2 dx <1;�0 := Z �j ̂(�)j2 d� <1;are respe
tively 
alled position and momentum (or frequen
y) of  .� Lo
alization in position and momentum. We have�x := �Z (x� x0)2j (x)j2 dx�1=2 <1;�� := �Z (� � �0)2j ̂(�)j2 d��1=2 <1:�x and �� are also 
alled position and momentum un
ertainty respe
-tively.In the following two se
tions we will 
onsider two 
lasses of phase atoms,namely wavelets and wavelet pa
kets. In parti
ular we will analyze the perfor-man
es of su
h two 
lasses in the framework of adaptive approximation of thesolution of (P").
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kets Chapter 55.4 WaveletsThe �rst possibility that we 
onsider is the one of wavelet adaptivity. Sin
ethe notation that we will use in this 
hapter di�ers slightly from the notationused up to now, let us �x it. In the literature it is possible to �nd a largenumber of orthonormal wavelet bases for L2:L2 =<  jk; j 2 Z+; k = 1; � � � ; 2j >span :Su
h bases 
onsist of fun
tions with the following lo
alization properties:� The position of  jk is xjk = k=2j.� The momentum of  jk is �jk = �2j (� 6= 0 independent of j and k).� The lo
alization in position of  jk is �xjk � 2�j.� The lo
alization in frequen
y (or momentum) of  jk is ��jk � 2jWe remark that, by the Heisenberg un
ertainty prin
iple it is not possible tolo
alize a fun
tion arbitrarily well both in position and momentum (�x ��� �1). Therefore the fun
tions  jk are lo
alized in the phase spa
e nearly as wellas possible.The 
onstru
tion of su
h bases is originally performed on R, but it 
anbe 
arried out also on the interval ([33℄) with boundary 
onditions of di�erenttype (homogeneous Diri
hlet, periodi
, . . . ). However in this paper we will notexpli
itly deal with the issue of boundary 
ondition, sin
e the phenomenologywe are interested in is in general 
on
entrated far from the boundaries.Remark 5.4.1: Though for simpli
ity we 
onsider here only orthonormal waveletbases, the strategy that we are going to present 
ould be applied, without majormodi�
ations, in the more general framework of biorthogonal wavelets. [32℄We re
all that the above lo
alization properties imply that a norm equiv-alen
e of the form kfkHr �  Xj;k 22jrj < f;  jk > j2!1=2holds for all f 2 Hr, r 2 (�R;R), with the parameter R > 0 depending on theparti
ular wavelet basis under 
onsideration. For f 2 H�r, r > 0 the notation< �; � > is to be intended as the duality relation between H�r and Hr.In the following it will be useful to represent ea
h basis fun
tion  jk withthe re
tangle ℄k2�j; (k + 1)2�j[�℄2j; 2j+1[ in the (x; �) plane. Using su
h a
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kets Chapter 5representation yields a \tiling" of the phase spa
e whi
h well represents thelo
alization features of su
h bases.When 
onsidering adaptive wavelet methods the 
lass of bases B takes theform B = fB = f jk; (j; k) 2 �g; � �nite subset of Z+� Zg:A simple, yet e�e
tive, adaptive strategy based on wavelet bases is thefollowing [67℄, [12℄, [18℄. Let u("n) be given:u("n) =Xj;k unj;k jk:We 
an 
onstru
t a basis Bn+1 2 B for approximating u("n+1) by simply look-ing at the size of the 
oeÆ
ients unj;k. If a 
oeÆ
ient is big, the 
orrespondingfun
tion is in
luded in the basis Bn+1, as well as some \neighboring" (in thephase-spa
e) fun
tions. If, on the other hand, a 
oeÆ
ient is very small, the
orresponding fun
tion will not belong to the basis Bn+1.More pre
isely, we de�ne Bn+1 as follows. We 
hoose two toleran
es Ær andÆa, as well as a number Nadd of \relevant neighbors", and we setBrn+1 = n jk : 2 32 jjunj;kj > Æro : (5.4.1)Moreover, we setIaddn+1 = f(j; k) : 2 32 jjunj;kj > Æag; (5.4.2)Njk = f(j + �; 2�k + �); � = 0; 1; � = �Nadd; � � � ; Naddg; (5.4.3)Ban+1 = [(j;k)2Iaddn+1f jk; (j; k) 2 Njkg: (5.4.4)The basis Bn+1 is then de�ned asBn+1 = Brn+1 [ Ban+1: (5.4.5)We stress out that the above re�ning and de-re�ning strategy is tuned in orderto give a good approximation in H 32 rather than in L2. This is re
e
ted bythe presen
e of fa
tor 2 32 j in equations (5.4.1) and (5.4.2). The 
hoi
e [18℄ ofsu
h a norm is heuristi
ally motivated by the fa
t that we are dealing with athird order operator.5.5 Wavelet Pa
ketsA \Wavelet Pa
ket di
tionary" D is a overly redundant (non linearly indepen-dent) set of fun
tions, whi
h, by abuse of notation we will 
all \basis fun
-tions". Ea
h basis fun
tion wp;!;s in the set is identi�ed by three parameters:
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tion 5.5. Wavelet Pa
kets 145the (s
aled) position p, the (s
aled) wave number ! and the s
ale s. Ea
hof these fun
tions is 
onstru
ted in su
h a way that its spa
e-lo
alization is�x � 2�s with 
enter p=2s and its frequen
y-lo
alization is �� � 2s with 
en-ter !2s. Again, in view of the Heisenberg un
ertainty prin
iple, the fun
tionswp;!;s are lo
alized in the phase spa
e nearly as well as possible.For a given f 2 L2 one 
an de�ne the wavelet pa
ket transform of f :dp;!;s(f) = Z fwp;!;s:Out of a given \Wavelet Pa
ket di
tionary" it is possible to extra
t manydi�erent orthonormal bases for L2 of the form B� = fwp;!;s; (p; !; s) 2 �g, bysele
ting suitable subsets � of the index set f(p; !; s)g. For su
h subsets theinversion formula holds for any f 2 L2:f = X(p;!;s)2� dp;!;s(f)wp;!;s:In parti
ular, for the 
hoi
e � = f(p; 1; s); p 2 Z; s 2 Z+g one obtains theusual wavelet orthonormal basis des
ribed in the previous se
tion.The \basis fun
tions" wp;!;s 
an be 
onstru
ted as follows. We start by
hoosing two quadrature mirror �lters, two �nite sequen
es fhng and fgng,satisfying the following relations:Xn h2n =Xn h2n+1 = 1p2 ; gn = (�1)n�1h1�n 8n 2 Z; (5.5.1)Xn hnhn+2m =Xn gngn+2m = (1; if m = 0;0; otherwise; (5.5.2)Xn hngn + 2m = 0; 8m 2 Z: (5.5.3)We 
an then de�ne a family of fun
tions, depending on an integer parameter` � 0 by W2`(x) = p2Xn hnW`(2x� n); (5.5.4)W2`+1(x) = p2Xn gnW`(2x� n): (5.5.5)We remark that W0 satis�es a dilation equation. Conditions (5.5.1 { 5.5.3)guarantee the existen
e of a 
ompa
tly supported solution of su
h a dilation
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kets Chapter 5equation (and therefore they imply the well posedness of de�nition (5.5.4)). W0andW1 are, respe
tively, the s
aling and wavelet fun
tions of the 
orrespondingwavelet basis. The pair fhng and fgng 
an be 
hosen in su
h a way that thefun
tions W` have any pres
ribed smoothness.Lemma 5.5.1: Let fhng and fgng be two families of QMFs satisfying 
ondi-tions (5.5.1 { 5.5.3). Let fW`g` the family of wavelet pa
kets asso
iated withthe �lters fhng and fgng. Then there is a K < 1, su
h that supp(W`) �[�K;K℄, for all ` � 1.For p 2 Z; ! 2 Z+; s 2 Z+, wavelet pa
kets are then de�ned bywp;!;s = 2s=2W!(2sx� p); (5.5.6)where ! is the (integer) s
aled wave number.Orthonormal sets 
an be extra
ted out of the wavelet pa
ket di
tionaryby sele
ting index subsets � for whi
h the dyadi
 intervals f[!2s; (! + 1)2s[:(p; !; s) 2 �g form a disjoint 
over of the positive semi-axis.More pre
isely, we will say that an index set � is admissible if the following
ondition is satis�ed: for � de�ned by� = f(!; s) : 9p; (p; !; s) 2 �g;it holds for ea
h (!; s); (!0; s0) 2 �(!; s) 6= (!0; s0)) [!2s; (! + 1)2s[\[!02s0; (!0 + 1)2s0[= ;:It is possible to prove that if the index set � is admissible, then B� =fwp;!;s; (p; !; s) 2 �g forms an orthogonal system.We say that an admissible index set �,� = f(p; !; s); (!; s) 2 �; p 2 I(!;s)g;is 
omplete at s
ale S on the domain T if � satis�es[(!;s)2�[!2s; (! + 1)2s[= [0; 2S[; (5.5.7)and if, for all (!; s) 2 �, the set I(!;s) = fp : (p; !; s) 2 �g satis�es[p2I(!;s)[p2�s; (p+ 1)2�s℄ � T: (5.5.8)Roughly speaking, a 
omplete index set identi�es the orthonormal basis ofa dis
rete subspa
e of L2(T) 
orresponding to a uniform dis
retization with
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kets 147mesh size 2�S. Condition (5.5.7) assures that all the frequen
ies below 2S are
overed, and 
ondition (5.5.8) guarantees that, for all frequen
y ranges, all thespatial positions are present.We 
an then de�ne a 
lass B of bases as follows:B = fB� � D;� 2 Lg; B� := fwp;!;s; (p; !; s) 2 �g; (5.5.9)with L = f� : � is admissible and #(�) < +1g:Again, it is useful to visualize the phase-spa
e lo
alization property of ea
hbasis fun
tion by means of a \tiling" (obtained by representing wp;!;s by there
tangle ℄p2�s; (p+ 1)2�s[�℄2s!; 2s(! + 1)[.
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orresponding to di�erent wavelet pa
kets orthonormal basesThe redundan
y of the wavelet pa
ket di
tionary allows for a greater 
ex-ibility as far as spa
e frequen
y lo
alization is 
on
erned. On the other hand,the 
omputation of a good approximation of a fun
tion by means of few degreesof freedom needs for a more sophisti
ated approa
h.Let us at �rst 
onsider the problem of approximating a known fun
tionf with as few as possible degrees of freedom. The extra
tion of a basis wellsuited for approximating the given fun
tion f with few degrees of freedomneeds now to be performed in two steps:(i) Sele
t a 
omplete (at s
ale S if the fun
tion is sampled with sampling rate2�S) index set �̂ 2 L.



148 Adaptivity & Wavelet Pa
kets Chapter 5(ii) Sele
t a subset �̂Æ � �̂ su
h thatkf � X(p;!;s)2�̂Æ wp;!;swp;!;skH3=2 is small:Task (ii) 
an be performed quite easily thanks to the observation that forall fun
tions f 2 H3=2 and for any orthonormal basis B�̂ 2 B it holdskfkH3=2 � 0� X(p;!;s)2� j(2s!)3=2wp;!;sj21A1=2 :As far as task (i) is 
on
erned, the optimal 
hoi
e is provided by an index set�̂ su
h that the 
orresponding basis B�̂ minimizes a suitable additive entropy:H(f; B�̂) = minB� H(f; B�):The basis B�̂ is usually referred to as best basis for the fun
tion f . If the goalis, as in our 
ase, to approximate f with as few as possible degrees of freedom,then the entropy 
an be for instan
e 
hosen of the following formH(f; B�) = #(f(p; !; s) 2 � : j(2s!)3=2wp;!;sj � Æg): (5.5.10)On
e B�̂ has been sele
ted, the subset �̂Æ is 
learly de�ned as�̂Æ = f(p; !; s) 2 �̂ : j(2s!)3=2wp;!;sj � Æg: (5.5.11)The implementation of the wavelet pa
ket transform and of the best basissear
h algorithm for a given fun
tion f is des
ribed in detail in [35℄. If f issampled with step h, the entire pro
edure has 
omplexity 1h log 1h .5.6 Wavelets vs Wavelet Pa
ketsIn [18℄ the e�e
tiveness of wavelet and wavelet pa
kets adaptive s
heme hasbeen 
ompared. We report here the results of the tests.Let us start with the the following test on the e�e
tiveness of waveletmethods. Let ("n)n=0;��� ;N be given.� Compute a referen
e solution u("n), (n = 0; � � � ; N), by solving (P") for" = "n with a �nite di�eren
e s
heme on a very �ne grid (\overkill"). Inour 
ase we used a dis
retization step 2:5 10�4.� For ea
h n = 0; � � � ; N � 1, perform the following pro
edure:
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kets 149Step 1. given �un (
omputed at the previous step)�un = Xj;k2�n unj;k jk;(�un approximation of u("n)), de�ne Bn+1 = f jk; (j; k) 2 �n+1gand the 
orresponding spa
e Vn+1 =< Bn+1 >span by the pre
edingadaptive strategy (5.4.1){(5.4.5).Step 2. de�ne �un+1 as the L2 orthogonal proje
tion of u("n+1) onto Vn+1�un+1 = X(j;k)2�n+1 < u("n+1);  jk >  jk:� For all n = 1; � � � ; N evaluate the relative erroren = ku("n)� �unkH3=2ku("n)kH3=2 :The above test has been performed for the following data in (P"): thedoping pro�le C(x) is 
hosen as in �gure 6, with max(C)=1 and min(C)=0.1,the Debye length is � = 0:1, the relaxation time is � = 1=8 and the appliedvoltage is V0 = 6:5. The solutions for these values of the parameters are theones depi
ted in pi
tures 1{3.
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Figure 6. Doping pro�le C(x)In the following table we give [18℄ for ea
h n, the value "n, the relativeerror en, the 
ardinality Nadapt of the adaptively sele
ted basis Bn, as well as
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kets Chapter 5the \
ompression ratio" (CR) Nadapt=Nunif (Nunif (� 2j for some j) being thenumber of degrees of freedom whi
h would be ne
essary to represent u("n)with a uniform dis
retization with the same a

ura
y)."n en Nadapt CR.0075 .1535 120 4.27.007 .0218 156 3.28.006 .0377 160 3.20.005 .0202 175 2.93.004 .0208 195 5.25.0025 .0230 256 4.00.002 .0137 353 5.70.0016 .0111 446 4.51.0011 .0123 596 6.71.00102 .0020 858 4.66.001 .0014 969 4.13Table 5.6.1. Wavelet Adaptive StrategyIf one wants to use wavelet pa
ket di
tionaries and the 
on
ept of bestbasis in the framework of the adaptive type algorithm des
ribed in se
tion5.3, for ea
h "n+1 one must be able to perform tasks (i) and (ii), for u("n+1)by analyzing the solution u("n) at the previous 
ontinuation step. We willnot deal here with the problem relative to task (ii), the extra
tion out ofthe best basis of a small subset well suited to well approximate u("n+1). Werefer to [63℄, where a possible strategy has been proposed, based on a suitablede�nition of \neighbors" (in the phase spa
e) of a given basis fun
tion wp;!;s.We will rather 
on
entrate here on the problem of sele
ting the best basis -or a 
lose enough basis - for u("n+1), by analyzing the solution u("n) at theprevious 
ontinuation step.In order to verify to what extent this is feasible, the following test has beenperformed� Compute u("n) (n = 0; : : : ; N) by solving the QHD equations for " = "nby �nite di�eren
es on a very �ne grid (\overkill"). In our 
ase we useda dis
retization step 2:5 10�4 (whi
h 
orresponds to a s
ale S � 12)� Compute the wavelet pa
ket transform wnp;!;s of u("n)wnp;!;s = Z u("n)wp;!;s;
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tion 5.6. Wavelets vs Wavelet Pa
kets 151and sele
t the best basis B̂n = fwp;!;s; (p; !; s) 2 �̂ng :H(u("n); B̂n) = minB� H(u("n); B�):� Compute the number of 
oeÆ
ients needed for approximating u("n+1)using elements of the best basis for u("n):H(u("n+1); B̂n)) = #(f(p; !; s) 2 �̂n : j(2s!)3=2wn+1p;!;sj � Æg);and 
ompare H(u("n+1); B̂n)) with the optimal number of 
oeÆ
ientsH(u("n+1); B̂n+1)).� De�ne an approximation to u("n+1), by sele
ting an index set �̂nÆ�̂nÆ = f(p; !; s) 2 �̂n : j(!2s) 32wn+1p;!;sj � Ægand 
omputing �un+1 = X(p;!;s)2�̂nÆ wn+1p;!;swp;!;s:� Evaluate the relative erroren+1wp = ku("n+1)� �un+1kH3=2ku("n+1)kH3=2 :The following table [18℄ summarizes the results of su
h test, performed inthe same 
ase as in the previous se
tion. We report the values of "n+1, of thenumber Nopt of signi�
ant degrees of freedom when approximating u("n+1) bymeans of the best basis B̂n+1� , the number Nest when approximating u("n+1) bymeans of the best basis B̂n� obtained from the analysis of u("n) and the erroren+1wp . The table also displays the two 
ompression ratios CRopt = Nunif=Noptand CRest = Nunif=Nest (Nunif is de�ned, as in the previous se
tion, as thenumber of degrees of freedom whi
h would be ne
essary to represent the solu-tion with the same a

ura
y by means of a uniform dis
retization of wavelettype).If we analyse the results of the previous tests we realise that wavelet adap-tivity for the numeri
al solution of QHD system is not entirely satisfa
tory.This is mainly due to the fa
t that wavelet bases approximate high frequen
ieswith basis fun
tions whi
h are highly lo
alized in spa
e. In other words, whenapproximating an highly os
illating fun
tion, the use of wavelets 
orrespond tousing (in the region where os
illations o

ur) an uniform dis
retization. By a
omparison it is 
lear that, espe
ially at very high frequen
ies, wavelet pa
ketsperform better, allowing to almost double the 
ompression ratio.
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"n Nopt Nest CRopt CRest enwp.0075 95 116 5.3 4.4 .0080.007 102 105 5.0 4.8 .0074.006 112 122 4.6 4.2 .0067.005 124 137 4.1 3.7 .0080.004 150 163 6.8 6.3 .0045.0025 192 168 6.1 5.3 .0028.002 253 292 8.0 6.9 .0023.0016 331 366 6.0 5.5 .0024.0011 480 585 8.3 6.8 .0012.00102 525 550 7.6 7.3 .0010.001 496 503 8.1 8.0 .0011Table 5.6.2. Performan
e of an adaptive WP algorithm
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hniques 1535.7 Wavelet Pa
ket adaptive methods & Compression te
hniquesWavelet pa
kets, due to their better frequen
y lo
alization property, are thensuperior to wavelets in drasti
ally diminishing the required number of degreesof freedom for well approximating the solution. Clearly they are more 
ostlywhen used to solve problem (P"), due to the higher 
ost of the WP transformwith respe
t to the FWT, and to the additional 
ost of the best basis sear
h.The intrinsi
 diÆ
ulties 
onne
ted with the appli
ation of wavelets in theframework of non{linear problems [44℄, [30℄ are even harder when dealing withWavelet Pa
kets. On the other hand the 
omputation of the wavelet pa
ket
oeÆ
ients of a given fun
tion obtained by applying a nonlinear fun
tional toa wavelet pa
ket la
unary sum, often requires the 
omputation of the 
orre-sponding s
aling 
oeÆ
ients at the �nest s
ale, hen
e making the realization ofa fully adaptive wavelet pa
ket s
heme unfeasible from a 
omputational pointof view.However, the strong non{linearity of the problem requires a 
ontinuationalgorithm in the parameter " and for ea
h "n of the "-sequen
e a non{linearsystem must be solved (for instan
e with a Newton algorithm). It is then
lear that, when (P") is solved for a small ", a linearized QHD system mustbe solved many times and the mu
h lower number of degrees of freedom se-le
ted with the wavelet pa
ket pro
edure is expe
ted to largely 
ompensatethe higher 
ost of the basis sele
tion and of the non{linearity treatment andto provide an over all more eÆ
ient numeri
al s
heme.1. Compute an approximation u0 to the solution u("0) of equations (P") for" = "0 using a 
oarse uniform grid. This is possible sin
e for " � 1 thesolution of (P") is smooth.2. Given the approximation un to the solution u("n) of (P"n), an approxi-mation un+1 to the solution u("n+1) of (P"n+1) is obtained as follows:� By analyzing un sele
t a wavelet pa
kets basis Bn+1, well suited forapproximating u("n+1).� Compute un+1 in Vn+1 =< Bn+1 >span approximate solution of(P"n+1), by a suitable numeri
al method (for instan
e, Galerkin ap-proximation of (P"n+1)).When we deal with the 
omputation of un+1 in Vn+1 =< Bn+1 >span, approxi-mate solution of (P"n+1), by, for instan
e, Galerkin approximation, we need tosolve in�nite linear systems of the typeRun+1 = g;
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kets Chapter 5where un+1 has only N nonzeros elements (we say un+1 2 �N), due to theparti
ular 
hoi
e of the basis Bn+1 and R = (r�;�0), withr�;�0 = R w�w(f)�0 ,� = (p; !; s), for some f > 0 and w�; w�0 belonging to Bn+1.Sin
e, as we will see in the next se
tion, the entries of the matri
es R in-volved in the wavelet pa
ket dis
retization of the operators have good de
ayproperties, we 
an apply su
h operators to sparse ve
tors in a quite e�e
tiveway, i.e. we 
an exploit the sparsity of the sti�ness matrix R and of the ve
torun+1 in su
h a way to perform, with a low 
omputational 
ost, an approxima-tion of the matrix-ve
tor produ
t Run+1.Non the less one 
an still hope to take advantage of the sparsity of thesolution of the QHD equation within the framework of a solution in the fullspa
e!5.7.1 First 
ompressionIn the wavelet 
ontext it is well known [20℄, [41℄ that a large 
lass of opera-tors have an almost sparse representation in wavelet 
oordinates thanks to thegood properties of lo
alization both in spa
e and in frequen
y of wavelet bases.Thus dis
arding all entries below a 
ertain threshohld will then give rise to asparse matrix that 
an be further pro
essed by eÆ
ient linear algebra tools.Motivated by su
h a result, as wavelet pa
kets provide better properties of lo-
alization both in spa
e and in frequen
y, the representation of su
h operatorsin terms of wavelet pa
kets should be in prin
iple sparser than in the wavelet
ase. Thus applying wavelet-like 
ompression te
hniques [41℄, [28℄, [27℄ in su
ha wavelet pa
kets framework, should give rise to mu
h sparser matri
es, hen
eredu
ing the 
omputational 
ost in solving the linear systems resulting fromthe Galerkin wavelet pa
kets dis
retization of the problem.To do that we need to estimate obje
ts of the typej Z wp;!;s(x)w(f)p0;!0;s0(x)dxj;where w(f)p0;!0;s0 is the f�th derivative of wp0;!0;s0. It is not restri
tive to sup-pose s > s0, otherwise we will integrate by parts f -times. Let us denote byi(wp;!;s; wp0;!0;s0) the fun
tion whose value is one if the supports of wp;!;s andwp0;!0;s0 are disjoint, zero otherwise, then the following estimate holds:Theorem 5.7.1: Let fW!g1!=0 be a family of wavelet pa
kets, then it holds����Z wp;!;s(x)w(f)p0;!0;s0(x)dx���� . 2(s+s0)=22�t(s�s0)+s0f�s+[log2 !0℄(f+t)i(wp;!;s; wp0;!0;s0):
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tion 5.7. Wavelet Pa
ket adaptive methods & Compression te
hniques 155In order to prove Theorem 5.7.1 we need the following result [60℄:Lemma 5.7.1: For every fun
tion W! it is possible to �nd a fun
tion g(x)su
h that g(t)(x) = W!(x), with kgk1 � C, where t equals the number of nullmomenta of W! and g has the same support as W!.Proof: Using the above Lemma and integrating by parts yield:jr�;�0j := ����Z wp;!;s(x)w(f)p0;!0;s0(x)dx����� 2(s+s0)=2 ����Z [2�stg(2sx� p)℄(t)[W!0(2s0x� p0)℄(f)dx����� 2(s+s0)=2 ����Z 2�stg(2sx� p)[W!0(2s0x� p0)℄(f+t)dx����� 2(s+s0)=22�st2s0(f+t) ����Z g(2sx� p)W (f+t)!0 (2s0x� p0)dx����� 2(s+s0)=22�st2s0(f+t)kW!0kW f+t;1i(wp;!;s; wp0;!0;s0) Z jg(2sx� p)jdx:By using Bernstein-type inequalitykW!0kW f+t;1 � 2[log2 !0℄(f+t)kW!0k1;where [x℄ denotes the smaller integer larger or equal than x, we havejr�;�0j � 2(s+s0)=22�st2s0(f+t)2[log2 !0℄(f+t)i(wp;!;s; wp0;!0;s0)kg(x)k12�sjsupp(W!)j:Finally, by using Lemma 5.5.1 whi
h yields jsupp(W!)j � K for all !, oneobtains: jr�;�0j � C2(s+s0)=22�t(s�s0)+s0f�s+[log2 !0℄(f+t)Ki(wp;!;s; wp0;!0;s0)Now we are ready to apply our �rst 
ompression to the matrix R.De�nition Let us �x J > 0. We apply �rst trun
ation de�ning ~RJ =(~r�;�0)�;�0 as follows~r�;�0 = � r�;�0 ; if �0 2 I�(J) \ �N0; otherwisewhere I�(J) = I(1)� (J � 1) [ I(2)� (J � 1), withI(1)� (J � 1) = f�0 : i(w�; w�0) 6= 0; s > s0; 2l1((s0;!0)) � 2�(J�1)g
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kets Chapter 5I(2)� (J � 1) = f�0 : i(w�; w�0) 6= 0; s0 > s; 2l2((s0;!0)) � 2�(J�1)g;while fun
tions li : N2 ! R are de�ned as followsl1((s0; !0)) := (s+ s0)=2� js� s0j(t� 1) + s0f � s+ [log2 !0℄(f + t)and l2((s0; !0)) := (s+ s0)=2� js� s0jt+ sf � s0 + [log2 !℄(f + t):Theorem 5.7.2: Let �N � � be a �xed subset of � of 
ardinality #�N � N ,then the following estimate holdskR� ~RJk`2(�N )!`2 � 3MKN2�J : (5.7.1)Proof: In order to prove the Theorem we use S
hur Lemma and we redu
eto estimate X�02�N jr�;�0 � ~r�;�0 j:Using the de�nition of ~r�;�0 yieldsX�02�N jr�;�0 � ~r�;�0j � X�02�NnI� jr�;�0j:Hen
e, by using Theorem 5.7.1, it followsX�02�NnI� jr�;�0 j� X�0:s>s0�02�NnI(1)� jr�;�0j+ X�0:s<s0�02�NnI(2)� jr�;�0j� X(p0;!0;s0)2�NnI(1)� C2(s+s0)=22�t(s�s0)+s0f�s+[log2 !0℄(f+t)Ki(wp;!;s; wp0;!0;s0) +X(p0;!0;s0)2�NnI(2)� C2(s+s0)=22�t(s0�s)+sf�s0+[log2 !℄(f+t)Ki(wp;!;s; wp0;!0;s0)= X(p0;!0;s0)2�NnI(1)� C2(s+s0)=22�tjs�s0j+s0f�s+[log2 !0℄(f+t)Ki(wp;!;s; wp0;!0;s0) +X(p0;!0;s0)2�NnI(2)� C2(s+s0)=22�tjs0�sj+sf�s0+[log2 !℄(f+t)Ki(wp;!;s; wp0;!0;s0):Using the fa
t that the set fp0 : i(wp0;!0;s0; wp;!;s) 6= 0g has 
ardinality notgreater than 3M max(1; 2s�s0), where M depends on the length of the support
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tion 5.7. Wavelet Pa
ket adaptive methods & Compression te
hniques 157of W! yieldsX�02�N jr�;�0 � ~r�;�0j� X(!0;s0)2�NnI(1)� 3MK max(1; 2s�s0)C2(s+s0)=22�tjs�s0j+s0f�s+[log2 !0℄(f+t) +X(!0;s0)2�NnI(2)� 3MK max(1; 2s�s0)C2(s+s0)=22�tjs0�sj+sf�s0+[log2 !℄(f+t)= X(!0;s0)2�NnI(1)� 3MKC2(s+s0)=22�(t�1)js�s0j+s0f�s+[log2 !0℄(f+t) +X(!0;s0)2�NnI(2)� 3MK2(s+s0)=22�tjs0�sj+sf�s0+[log2 !℄(f+t)� 3MK( X(!0 ;s0)2�NnI(1)� 2l1((!0 ;s0)) + X(!0;s0)2�NnI(2)� 2l2((!0 ;s0)))Hen
e, by using the de�nitions of I(1)� and I(2)� , it followsX�02�N jr�;�0 � ~r�;�0 j � 3MKN2�J :In 
omplete analogy one proves an analogous estimate for the rows sumsX�2�N jr�;�0 � ~r�;�0 j � X�2�NnI�0 jr�;�0j � 3MKN2�J :
Remark 5.7.1: We obtained thatkR� ~RJk`2(�N )!`2 � 3MKN2�Jand so for ea
h un+1 2 �N we are able to estimate the error we 
ommit byusing ~RJ instead of R:k(R� ~RJ)un+1k`2 � kR� ~RJk`2(�N )!`2kun+1k`2 � 3MKN2�Jkun+1k`2 :This is a pessimisti
 estimate and quite rough if we 
ompare it with the one that
an be a
hieved in wavelet 
ontext, but this huge di�eren
e 
an be 
ompensatedby the fa
t that wavelet pa
kets perform better than wavelet in approximatingwith fewer degrees of freedom the high frequen
y dispersive os
illations of thesolution of our parti
ular problem.
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kets Chapter 55.7.2 Se
ond 
ompressionBy exploiting good properties of lo
alization even in frequen
y of wavelet pa
k-ets, we 
an further 
ompress the matrix ~RJ , obtaining a se
ond matrix ~~RJ su
hthat kR� ~~RJk`2(�N )!`2remains little.From equation (5.5.4) it follows thatŴ!(�) = m"1(�=2)m"2(�=4) : : :m"j(�=2j)Ŵ0(�=2j); (5.7.2)where "i 2 f0; 1g, m0(�) =Pn hnein�, m1(�) = e�i�m0(� + �) andjm0(�)j2 + jm0(� + �)j2 = 1: (5.7.3)From (5.7.3) and from the fa
t that m0(�) and m1(�) approximate better andbetter respe
tively the ideal low pass �lter and the ideal high pass �lter as thelengths of the �lter in
rease, it is not diÆ
ult to prove the following:Lemma 5.7.2: For every 0 < � < 1 it exists a 
ouple of quadrature mirror�lters of lengths depending on � su
h that for every � it holds:jm0(�)m1(�)j � �: (5.7.4)Proof: We show only that if jm0(�)m1(�)j � �, then � < 1. In fa
t if� = 1, it would follow jm0(��)j = jm1(��)j = 1, for some ��, whi
h, used togetherwith (5.7.3), would give jm1(��)j = 0. Absurd.Now we are interested in estimating obje
ts of the type:j Z Ŵ!(�)Ŵ!0(�)d�j:Lemma 5.7.3: The following estimate holdsj Z Ŵ!(�)Ŵ!0(�)d�j � C�
!;!0 ;where � < 1, 
!;!0 =Pj0n=1 j!n � !0nj and C depends only on Ŵ0.Proof: From Plan
herel's theorem it follows thatZ W!(x)W!0(x)dx = 1=(2�) Z Ŵ!(�)Ŵ!0(�)d�:



Se
tion 5.7. Wavelet Pa
ket adaptive methods & Compression te
hniques 159Let us suppose j > j 0. Re
alling (5.7.2) yieldsj Z Ŵ!(�)Ŵ!0(�)d�j= j Z m"1(�=2)m"2(�=4) : : :m"j (�=2j)Ŵ0(�=2j)m"01(�=2)m"02(�=4) : : :m"0j0 (�=2j0)Ŵ0(�=2j0)d�j= j Z m"1(�=2)m"01(�=2) : : :m"j0 (�=2j0)m"0j0 (�=2j0)m"j0+1(�=2j0+1) : : :m"j(�=2j)Ŵ0(�=2j)Ŵ0(�=2j0)d�j:Now, by using Lemma 5.7.2, one obtainsj Z Ŵ!(�)Ŵ!0(�)d�j� Z jm"1(�=2)m"01(�=2)j : : : jm"j0 (�=2j0)m"0j0 (�=2j0)jjm"j0+1(�=2j0+1)j : : : jm"j(�=2j)jjŴ0(�=2j)jjŴ0(�=2j0)jd�� C�
!;!0 ;where � < 1, 
!;!0 =Pj0n=1 j"n � "0nj and C depends only on Ŵ0.Let � = (p; !; s). Suppose for the moment s0 > s. As we want to improvethe 
ompression of matrix ~RJ , we are interested in estimating in parti
ularobje
ts of the type ����Z wp;!;s(x)w(f)p0;!0;s0(x)dx���� :Lemma 5.7.4: The following estimate holds����Z wp;!;s(x)w(f)p0;!0;s0(x)dx���� � 2�1=2(2(f�1=2)s0�s)(2�)�1C1Cf�
�;�0 ; (5.7.5)where C1; Cf depend only on ŵ0 and its Sobolev regularity. � < 1 and 
!;!0 =Pj0n=1 j!n � !0nj.
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kets Chapter 5Proof: In 
omplete analogy with the proof of Lemma 5.7.3, one obtains����Z wp;!;s(x)w(f)p0;!0;s0(x)dx����= 2(s+s0)=22� �����Z � j�j2s0�f ei �2s0 p0Ŵ!0(�=2s0)ei �2s pŴ!(�=2s)d������� 2(s+s0)=22s0f2� Z j�jf jŴ!0(�=2s0)Ŵ!(�=2s)jd�� 2�1=2(2(f�1=2)s0�s)(2�)�1 Z j�jf jjm"01(�=2s0+1)m"02(�=22+s0) : : :m"0j0 (�=2j0+s0)Ŵ0(�=2j0+s0)m"1(�=2s+1)m"2(�=22+s) : : :m"j (�=2s+j)Ŵ0(�=2s+j)jd�:Using Lemma 5.7.2 yields����Z wp;!;s(x)w(f)p0;!0;s0(x)dx���� � 2�1=2(2(f�1=2)s0�s)(2�)�1C1Cf�
�;�0 ;where � < 1, 
!;!0 =Pj0n=1 j"n � "0nj, while C1; Cf depend only on Ŵ0 and itsSobolev regularity.Now we apply to ~RJ a se
ond 
ompression de�ned as followsDe�nition Let us de�ne ~~RJ = (~~r�;�0)�;�0 where~~r�;�0 = 8<: ~r�;�0 ; if �0 2 ��(J) \ �N0; otherwisewhere ��(J) = �(1)� (J � 1) [ �(2)� (J � 1), with�(1)� (J � 1) = f�0 : s < s0; 2�1=2(2(f�1=2)s0�s)�
�;�0 > 2�Jg;�(2)� (J � 1) = f�0 : s > s0; 2js�s0j�1=2(2(f�1=2)s�s0)�
�;�0 > 2�Jg:Theorem 5.7.3: Let �N � � be a �xed subset of � of 
ardinality #�N � N ,then the following estimate holdsk ~RJ � ~~RJk`2(�N )!`2 . N2�J : (5.7.6)Proof: In order to prove the Theorem we use S
hur's Lemma. Hen
e weredu
e to estimateP�02�N j~r�;�0 � ~~r�;�0 j. By means of the de�nition of the set



Se
tion 5.8. Open problems and perspe
tives 161�� we obtain X�02�N j~r�;�0 � ~~r�;�0j� X�02(�N\I�)n�� j~r�;�0j� X�0:s<s0�02(�N\I�)n�(1)� j~r�;�0j+ X�0:s>s0�02(�N\I�)n�(2)� j~r�;�0j:Now we pro
eed as in the proof of Theorem 5.7.2. Using Lemma 5.7.4 and thefa
t that the set fp0 : i(wp0;!0;s0; wp;!;s) 6= 0g has 
ardinality not greater than3M max(1; 2s�s0), whereM depends on the length of the support ofW!, yieldsX�02�N j~r�;�0 � ~~r�;�0 j� X(!0;s0)2(�N\I�)n�(1)� (2�)�13MK max(1; 2s�s0)2�1=2(2(f�1=2)s0�s)(2�)�1C1Cf�
�;�0 +X(!0;s0)2(�N\I�)n�(2)� (2�)�13MK max(1; 2s�s0)2�1=2(2(f�1=2)s�s0)(2�)�1C1Cf�
�;�0= 3MK(2�)�1C1Cf 0B� X(!0;s0)2(�N\I�)n�(1)� (2�)�12�1=2(2(f�1=2)s0�s)�
�;�0+X(!0;s0)2(�N\I�)n�(2)� 2js�s0j2�1=2(2(f�1=2)s�s0)(2�)�1�
�;�01CA� (3MK(2�)�1C1Cf)N2�J :In 
omplete analogy one proves an analogous estimate for the row sums.5.8 Open problems and perspe
tivesThe use of the adaptive treatment of a nonlinear PDE (des
ribing the ele
trondensity in a quantum hydrodynami
 model for semi-
ondu
tors) by waveletpa
kets dis
retization is motivated by the lo
ally os
illating patterns of thesolution whi
h 
an be better 
ompressed by a few wavelet pa
kets than bywavelets or adaptive �nite elements. This property is illustrated by some nu-meri
al examples. Even if in this Chapter we fo
us mainly on the issue of the



162 Adaptivity & Wavelet Pa
kets Chapter 5sparsity of the matrix resulting from the wavelet dis
retization of di�erentialoperators, there are however several new problems whi
h are raised by theuse of wavelet pa
kets for the adaptive dis
retization: appropriate quadraturerules, treatment of the nonlinear terms and 
onditioning of the resulting ma-tri
es.As a useful step toward a reliable implementation of su
h an adaptivewavelet pa
ket s
heme, it would be interesting to study, in a simple model
ase, the 
omputational e�e
tiveness of the 
ompression pro
edures presentedin Se
tion 5.7, by 
omparing the numeri
al results with the theoreti
al esti-mates (5.7.1) and (5.7.6).
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A
knowledgementsThat Gandalf should be late, does not bode well. But it is said: "Do not meddlein the a�airs of Wizards, for they are subtle." The 
hoi
e is yours: to go orwait."But I don't think you need to go alone" ex
laimed Gandalf. "Not if you knowof anyone you 
an trust, and who would be willing to go by your side { andthat you would be willing to take into unknown perils. But if you look for a
ompanion, be 
areful in 
hoosing! And be 
areful of what you say, even toyour 
losest friends! The enemy has many spies and many ways of hearing."At last the 
ompanions turned away, and never again looking ba
k they rodeslowly homewards; and they spoke no word to one other until they 
ame ba
kto the Shire, but ea
h had great 
omfort in his friends on the long grey road.In a 
hair, at the far side of the room fa
ing the outer door, sat a woman.Her long bla
k hair rippled down her shoulders. "Come dear folk!" she said,taking Frodo by the hand. "Laugh and be merry! I am Goldberry, daughter ofthe River.""For you" she said to Sam, "I have only a small gift." She put into his handa little box of plain grey wood, unadorned save for a single silver rune uponthe lid. "In this box there is earth from my or
hard. Though you should �ndall barren and laid waste, there will be few gardens in Middle-earth that willbloom like your garden, if you sprinkle this earth there. Then you may remem-ber Galadriel."But Sam turned to Bywater, and so 
ame ba
k up the Hill, as the day wasending on
e more. And he went on, and there was yellow light, and �re within;and he was expe
ted. He drew a deep breath. "Well, I'm ba
k," he said.


