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2 Notations



INTRODUCTION
Three Rings for the Elven-kings under the sky,Seven for the Dwarf-lords in their halls of stone,Nine for Mortal Men doomed to die,One for the Dark Lord on his dark throneIn the Land of Mordor where the Shadows lie.One Ring to rule them all, One Ring to �nd them,One Ring to bring them all and in the darkness bind themIn the Land of Mordor where the Shadows lie.(J.R.R. Tolkien, The Lord of the Rings)Adaptive methods for di�erential equationsThe goals of the design of any numerial omputational method are1. reliability2. eÆieny .Reliability means that the omputational error (i.e. the di�erene between theexat and the approximate solution measured in a suitable norm) is ontrolledon a given tolerane level. EÆieny means that the omputational work toompute a solution within the given tolerane is essentially as small as possi-ble.It frequently happens in pratial problems that due to the nature of thedata a solution of a di�erential problem ould exhibit some singularities. Inthis ase to ahieve the goals of reliability and eÆieny, one would like to in-rease the auray of the approximate solution without using too many addi-tional degrees of freedom. One way to do this to use a omputational methodwhih is adaptive with feedbak from the omputational proess. Adaptiveproedures for the numerial solution of partial di�erential equations startedin the late 70's and are now standard tools in siene and engineering: they3



4 Introdutiononsist of a disretization method together with an adaptive algorithm, whosemain features are:(a) a stopping riterium guaranteeing error ontrol to a given tolerane level;(b) a modi�ation strategy in ase the stopping riterium is not satis�ed.A posteriori error estimators [4℄, [6℄, [7℄, [83℄, [86℄, [87℄ are an essential ingre-dient of any modi�ation strategy and hene of any adaptive proedure. Theyare omputable quantities depending on the omputed solution(s) and datathat provide information about the quality of approximation and may thus beused to make eÆient mesh modi�ation.The ultimate purpose of adaptive methods, suh as adaptive �nite elementmethods (FEM), is to onstrut a sequene of meshes that would eventuallyequidistribute the approximation errors and redue, as a onsequene, the om-putational e�ort. To this end, the a posteriori error estimators are split intoloal indiators whih are then employed to make loal mesh modi�ations byre�nement and oarsening. This naturally leads to loops of the formSolve ! Estimate ! Re�ne/Coarsen: (0.0.1)Although these methods have been show to be very eÆient from a ompu-tational point of view, the theory desribing the advantages of suh methodsover their non-adaptive ounterparts is still not satisfatory. For results ofthis kind, at least in the ase of the numerial solutions of ellipti equationsby means of adaptive �nite element methods, we refer to [49℄, [71℄, [21℄.Reently a new lass of numerial adaptive shemes has been developed,namely adaptive wavelet methods.Adaptive wavelet shemesAdaptive wavelet shemes for the numerial solution of both linear and non-linear equations typially rely on the empirial idea that loal error indiatorsare diretly given by the size of the urrently omputed wavelet oeÆients:a large oeÆient indiates important utuations of the solution on the sup-port of the orresponding wavelet, and suggests to re�ne the approximationby adding wavelets at �ner sale in this region. This idea was �rst introduedin [67℄, for the disretization of initial value problem, then developed in [16℄,[65℄. Reently it was also applied to stationary problems for whih the possi-bility of omputing a residual allows to derive more preise a posteriori errorindiators from the omputed wavelet oeÆients. In the framework of linear



Introdution 5ellipti PDE's, this approah leads to a more rigorous analysis of the waveletadaptive strategy, as introdued in [10℄ and further developed in [36℄. In thisrespet we also reall multilevel �nite element approah [22℄, [5℄.More reently new development on wavelets and nonlinear approximation[47℄, [48℄ have provided new tools for understanding and designing adaptivewavelet shemes for linear [17℄, [19℄, [28℄, [31℄ and nonlinear equations [30℄,[29℄, [79℄, [81℄, [82℄, requiring1. the estimation-evaluation of the ation of (linear or nonlinear) operatorson funtions expressed in terms of wavelet oeÆients2. the traking of the signi�ant oeÆients as the iterative solution proessprogresses.Suh lass of adaptive wavelet shemes strongly rely on the sparsity of thewavelet representation of the solution and of the involved operators allowingfor data ompression, as well as the ability to perform aurate numerial om-putations in the ompressed representation.In this thesis we present and study adaptive wavelet shemes obtained byoupling iterative algorithms for the solution of linear and nonlinear problemsand the tehniques of nonlinear approximation. The approah we follow relieson a new paradigm whih has been put forward reently for a lass of linearproblems [80℄, [31℄. This new paradigm is based upon a onvergent iterativesheme written for an equivalent in�nite dimensional problem formulated inthe wavelet oordinate domain and, as the iteration progresses, the adaptiveevaluation of the involved linear and nonlinear in�nite dimensional operators.Classial approah & New approahThe new approah to the adaptive solution of well-posed PDE's has been verylearly presented in [29℄. Let us point out, following suh a paper, the di�er-enes between the lassial paradigm and the new paradigm to numeriallysolving (linear and nonlinear) equations.The lassial approah is onerned with the following issues:(.1) variational formulation of the ontinuous problem;(.2) (adaptive) disretization of the in�nite dimensional problem so as toobtain a �nite system of algebrai equations;



6 Introdution(.3) numerial solution of the �nite system of equations, by means of a on-vergent iterative sheme;(.4) if the solution is not satisfatory, then perform a new (adaptive) dis-retization.It is important to remark that performing the above approah yields a se-quene of �nite dimensional problems depending on the (adaptively) hosendisretizations. As a onsequene the onvergene of the iterative sheme de-pends itself on the hosen disretizations.The new approah is performed by essentially using the same ingredients as inthe lassial approah, but "re-ordered" in a new meaningful way. The basisteps there read as follows:(n.1) variational formulation of the ontinuous problem;(n.2) transformation of the initial problem into an equivalent in�nite dimen-sional problem in `2;(n.3) derivation of a onvergent iterative sheme for the in�nite dimensional`2-problem;(n.4) numerial realization of the iterative sheme by an approximate (possi-bly adaptive) appliation of the involved in�nite dimensional operatorswithin some strategy of dynamially updated auray toleranes.The main di�erene between the two approahes is the disretization step.In the lassial approah it is performed (step .2) at the beginning of the pro-edure, by adaptively hoosing a disrete spae and then solving the resulting�nite dimensional problem, by using an iterative sheme. On the ontraryin the new approah a onvergent iterative sheme is written diretly for the1-dimensional problem and no disrete spaes are �xed in advane. The(adaptive) disretization is then performed at the very end of the proedure(step n.4), by an (adaptive) approximate appliation of the involved in�nitedimensional operators, as the iterative sheme progresses.It is important to remark that the onvergene of the1-dimensional itera-tive sheme does not depend on the disretization, as it happens in the lassialapproah, but it is based on the "wavelet preonditioning" of the initial on-tinuous problem. Wavelet preonditioning relies on the haraterization of theinvolved funtional spaes (typially Hilbert spaes) in terms of the deay of



Introdution 7the wavelet oeÆients, i.e. the norm of a funtion is equivalent to a weighted`2-norm of its wavelet oeÆients.In arrying out the new paradigm, for both linear and nonlinear equations,one has to fae di�erent issues, namely:(a) the design of stable onvergent iterative shemes for the 1-dimensionaldisrete problem(b) the design of eonomi approximate appliation shemes for the involvedlinear and nonlinear in�nite dimensional operators.() the hoie of toleranes in (n:4) to ensure that the perturbed iterationonverges to the orret solution;(d) the estimate of the omplexity of the sheme.In this thesis we deal with issue (a) (only in the linear ase) and issue (b)(both in the linear and nonlinear ase).It ould happen (see e.g. nononforming domain deomposition and Shuromplement, Chapter 3) that the approximate appliation of an operator isequivalent to the approximate solution of an auxiliary problem. In this aseissue (a) redues to solve the auxiliary problem by using any strategy (e.g.�nite elements) able to give an approximate solution within a presribed tol-erane.The basi shemeWe onsider the numerial solution of the problem:R(u) = 0 (0.0.2)where R : V ! W is a (linear or nonlinear) mapping between two Hilbertspaes V;W .Chosen a wavelet basis f �g�, it is possible to transform (0.0.2) into waveletoordinates, obtaining an equivalent1-dimensional problem: �nd u 2 `2 suhthat R(u) = 0; (0.0.3)where R : `2 ! `2 maps the sequene of the wavelet oeÆients of v into thesequene of the wavelet oeÆients of R(v), while u is the unknown in�nite



8 Introdutionarray ontaining the wavelet oeÆients of the unknown solution u to the ini-tial problem (0.0.2).Remark that problem (0.0.3) is indeed equivalent to problem (0.0.2). Noapproximation is performed at this point. Aording to (n:3) we wish todevise an iterative onvergent sheme for the problem (0.0.3). The shemeswe shall onsider will have this formun+1 = un � BnR(un) (0.0.4)where the (in�nite, possibly iteration dependent) matrix Bn is yet to be hosenin order to guarantee the onvergene:(1) for Bn = �I we will obtain an 1-dimensional Rihardson sheme,(2) for Bn = [R0(un)℄�1, where R0(u) is the Fr�ehet derivative of R at u, wewill obtain an 1 dimensional Newton sheme.In order to arrive at omputable versions of the shemes (0.0.5), we willouple suh iterative algorithms with the tehniques of nonlinear wavelet ap-proximation [47℄, [48℄, obtaining a lass of (adaptive) wavelet methods, whosegeneral form is un+1 = PNi+1(un � BnR(un)) (0.0.5)where PN is a nonlinear projetor retaining the N largest, in absolute value,wavelet oeÆients. The introdution of the nonlinear projetion will resultin an impliit form of adaptivity, in whih no spei� approximation spae is�xed, but the �nite number of degrees of freedom to be used is determined ateah stage by the nonlinear projetor itself.For di�erent hoies of the matrix Bn we will obtain di�erent nonlinear waveletmethods, namely:(nl.1) for Bn = �I we will obtain theNonlinear Rihardson sheme (Chapter3),(nl.2) for Bn = [R0(un)℄�1, where R0(u) is the Fr�ehet derivative of R at u, wewill obtain the Nonlinear Newton sheme (Chapters 4).In this thesis we will perform an analysis of the two shemes, dealing with theissues of stability and onvergene. We will also deal, in a diret way, with theproblem of the evaluation-ompression of linear operators and, in an indiretway, with the same problem for nonlinear operators, resulting in a reipe forthe hoie, at eah step, of the involved toleranes.



Introdution 9The outline of the thesis is as follows: in Part I (Chapter 1 and Chapter 2)we reall for the sake of ompleteness some results about linear and nonlinearwavelet approximation: almost all the material of these hapters is borrowedfrom [27℄. In Part II we design and study adaptive wavelet methods for linearequations (Chapter 3) and for nonlinear equations (Chapter 4). Finally inChapter 5 we disuss adaptive wavelet pakets methods for linear equations.



10 Introdution
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Chapter 1 LINEAR WAVELETAPPROXIMATION
Days passed and the Day drew nearer. An odd-looking waggon laden withodd-looking pakages rolled into Hobbiton one evening and toiled up the Hillto Bag End. An old man was driving it all alone. He wore a tall pointed bluehat, a long grey loak, and a silver sarf. He had a long white beard andbushy eyebrows that stuk out beyond the brim of his hat. At Bilbo's frontdoor the old man began to unload: there were great bundles of �reworks of allsorts and shapes, eah labelled with a large red G and the elf-rune  . Thatwas Gandalf 's mark, of ourse, and the old man was Gandalf the Wizard,whose fame in the Shire was due mainly to his skill with �res, smokes andlight. His real business was far more diÆult and dangerous, but theShire-folk knew nothing about it.(J.R.R. Tolkien, The Fellowship of the Ring)1.1 Some funtional spaesIn this setion we want to desribe the smoothness spaes that we shall needin what follows. There are two important ways to desribe smoothness spaes:the �rst way is through notions suh as di�erentiability and moduli of smooth-ness, the seond way is to expand funtions into a series of building bloks (forinstane Fourier or wavelet) and desribe smoothness as deay onditions onthe oeÆients in suh expansions. We shall give both desriptions. The �rstis given below, while the seond will be given when we disuss wavelet deom-positions.The most natural way of measuring the smoothness of a multivariate fun-tion f is ertainly the order of di�erentiability, i.e. the maximal m suh that��f; j�j := �1+�2+: : :+�d � m is ontinuous. For 
 � R , we de�ne Cm(
)to be the spae of ontinuous funtions whih have bounded and ontinuous13



14 Linear wavelet approximation Chapter 1partial derivatives ��, j�j � m. This spae is equipped with the normkfkCm(
) := supx2
 jf(x)j+ Xj�j=m supx2
 j��f(x)j;for whih it is a Banah spae.In order to measure the smoothness properties of a funtion in an averagesense, it is also natural to introdue Sobolev spaes Wm;p(
) onsisting of allfuntions f 2 Lp, with partial derivatives up to order m in Lp, p 2 [1;1℄.This spae is also a Banah spae, when equipped with the normkfkWm;p := kfkLp + jf jWm;p; jf jWm;p := Xj�j=m k��fkLp;where we used the notation j � j to denote the orresponding semi-norm. Allthe above spaes share the ommon feature that the regularity index m is aninteger.How to generalize desribing the regularity of a funtion in a more preise way,through frational order of smoothness?In the ase of L2-Sobolev spaes Hm := Wm;2 and when 
 = R , we an de�nean equivalent formula based on the Fourier transformkfkHm ' ZR(1 + j!j)2mjf̂(!)j2d!:For a non-integer s � 0, it is thus natural to de�ne the spae Hs as the set ofall L2 funtions suh thatkfkHs ' ZR(1 + j!j)2sjf̂(!)j2d!is �nite.In the ase ofCm spaes, we note that supx2
 jf(x+h)�f(x)j � (sup jf 0j)jhjif f 2 C1 for any h 2 R , whereas for an arbitrary f 2 C0, supx2
 jf(x + h)�f(x)j might go to zero arbitrarily slow as jhj ! 0. This motivates the def-inition of the H�older spae Cs, 0 < s < 1 onsisting of those f 2 C0 suhthat supx2
 jf(x+ h)� f(x)j � Cjhjs:If m < s < m + 1, a natural de�nition of Cs is given by f 2 Cm and ��f 2Cs�m; j�j = m. It is not diÆult to prove that this property an also beexpressed by supx2
 j�nhf(x)j � Cjhjs;



Setion 1.1. Some funtional spaes 15where n > s and �nh is the n-th order �nite di�erene operator de�ned reur-sively by �1hf(x) = f(x+ h)� f(x) and �nhf(x) = �1h(�n�1h )f(x).Let us now onsider the generalization of "s order of smoothness in Lp"for s non-integer and p di�erent from 2 and 1. In partiular we onsider twolasses of funtion spaes: Sobolev and Besov spaes.Sobolev spaes W s;p are de�ned (if m < s < m+ 1) by kfkW s;p = kfkLp +jf jW s;p with jf jW s;p := Xj�j=m Z
2 j��f(x)� ��f(y)jpjx� yj(s�m)p+d dxdy:We refer to [1℄ for a general introdution.Besov spaes Bsp;q, involve an extra parameter q and an be de�ned through�nite di�erenes. These spaes inlude most of those we have listed so far aspartiular ases for ertain ranges of indies. As we will show in the nextChapter, these spaes are also produed by general "interpolation tehniques"between funtion spaes of integer smoothness, and they an be exatly har-aterized by the rate of multiresolution approximation error, as well as fromthe size properties of the wavelet oeÆients. For these reasons we brieyreall their de�nitions and properties.We de�ne the n-th order Lp modulus of smoothness of f by!n(f; t;
)p = supjhj�t k�nhfkLp(
h;n);(h is a vetor in R of Eulidean norm less than t), where 
h;n := fx 2 
 :x + kh 2 
; k = 0; : : : ; ng. For p; q � 1, s � 0, the Besov spaes Bsp;q(
)onsists of those funtions f 2 Lp(
), suh that(2sj!n(f; 2�j)p)j�0 2 `q;where n is an integer suh that s < n. A natural norm for suh a spae is thengiven bykfkBsp;q := kfkLp + jf jBsp;q ; jf jBsp;q := k(2sj!n(f; 2�j)p)j�0k`q :The spae Bsp;q represents "s order of smoothness measured in Lp", with theparameter q allowing a �ner tuning on the degree of smoothness - one hasBsp;q1 � Bsp;q2 if q1 � q2 - but plays a minor role in omparison to s sineBs1p;q1 � Bs2p;q2; if s1 � s2;



16 Linear wavelet approximation Chapter 1regardless of the value of q1 and q2.More generally, it an be proved [78℄ that W s;p = Bsp;p, when s is not aninteger. Indeed the spaes Wm;p are not Besov spaes for m 2 N and p 6= 2.Let us now state the so-alled Sobolev embedding theorem [1℄:W s1;p1 � W s2;p2 if s1 � s2 � d(1=p1 � 1=p2);exept in the ase where p2 = +1 and s1 � d(1=p1 � 1=p2) is an integer, forwhih one needs to assume that s1 � s2 > d(1=p1 � 1=p2):In the ase of Besov spaes, a similar embedding relation [78℄ is given byBs1p1;p1 � Bs2p2;p2 if s1 � s2 � d(1=p1 � 1=p2)with no restrition on the indies s1; s2 � 0 and p1; p2 � 1.The Besov spaes an also be de�ned for p and q less than 1. This extension,whih will be of partiular importane in the study of nonlinear and adap-tive approximation, is the soure of additional diÆulties whih go beyond thesope of this introdution [73℄.Let us now disuss the topi of haraterizing funtional spaes through waveletoeÆients.1.2 Wavelets: an overviewWe reall some general notations and features for wavelet bases [69℄, [45℄. Theyare usually assoiated with multiresolution approximation spaes fVjgj�0:De�nition A multiresolution analysis (MRA) is de�ned as a sequene oflosed subspaes Vj of L2(R), j 2 Z, with the following properties1. Vj � Vj+1,2. v(x) 2 Vj , v(2x) 2 Vj+1,3. v(x) 2 V0 , v(x+ 1) 2 V0,4. [+1j=�1Vj is dense in L2(R) and \+1j=�1Vj = f0g,5. A ompatly support saling funtion ' 2 V0, with a non-vanishing inte-gral exists suh that the olletion f'(x� k) : k 2 Zg is a Riesz basisof V0.



Setion 1.2. Wavelets: an overview 17It is immediate to note that the olletion of funtions f'j;k : k 2 Zg, with'j;k(x) = 2j=2'(2jx � k) is a Riesz basis of Vj. De�ning � = (j; k), j�j = jand �j := f(j; k) : k 2 Zg, we have that Vj is generated by a loal basisf'�g�2�j , whose supports are ontrolled byjsupp('�)j � C2�j; (1.2.1)if � 2 �j and satisfy#f� 2 �j : supp('�) \ supp('�) 6= 0g � C; (1.2.2)with C independent of � and j.We will use Wj to denote a spae omplementing Vj in Vj+1, i.e. a spaethat satis�es Vj+1 = Vj �Wj;where the symbol � stands for diret sum.The omplement spaeWj, whih ontains the "detail" information neededto go from an approximation at resolution j to an approximation j+1, is gen-erated by a similar loal basis f �g�2�j , �j = �j+1 n �j, with  � :=  j;k(x) =2j=2 (2jx� k).The full multisale wavelet basis f �g�2�, where � := [j�0�j, is a Rieszbasis for L2(R): it allows to expand an arbitrary funtion f intof =X�2� d� �;where � := [j�0�j with the onvention that we inorporate the funtionsf'�g�2�0 into f �g�2�0 and for all sequenes fd�g�2� we have the norm equiv-alene kX�2� d� �k2L2 �X�2� jd�j2; (1.2.3)where the oeÆients d� in the expansion of f are named wavelet oeÆients.In the ase of biorthogonal wavelets [32℄ the oeÆients d� are obtained byan inner produt d� = (f; ~ �), where the dual wavelet ~ � is an L2 funtion. Inthe standard biorthogonal onstrutions, a dual saling funtion ~' and a dualwavelet ~ exist and generate a dual multiresolution analysis with subspaes~Vj and ~Wj, suh that ~Vj ? Wj Vj ? ~Wj:Moreover the dual funtions also have to satisfy( ~'; '(� � l)) = Æl ( ~ ;  (� � l)) = Æl;



18 Linear wavelet approximation Chapter 1where Æl = 1 if l = 0, zero otherwise.The dual wavelet system f ~ �g�2� (risp. the dual saling system f'�g�2�) hassimilar loal support properties as the primal wavelets  � (risp. the primalsaling funtions '�).It is useful to introdue the following projetion operators:Pj : L2 ! Vj: f ! Pjf =Xk2Z(f; ~'j;k)'j;k;Qj : L2 !Wj: f ! Qjf =Xk2Z(f; ~ j;k) j;k (1.2.4)and the orresponding dual projetors:P �j : L2 ! ~Vj: f ! Pjf =Xk2Z(f; 'j;k) ~'j;k;Q�j : L2 ! ~Wj: f ! Q�jf =Xk2Z(f;  j;k) ~ j;k:As far as we have only onsidered the univariate ase; in the standard on-strutions of wavelets on the Eulidean spae R , the saling funtions havethe form '� = 'j;k = 2jd=2'(2j � �k), k 2 Zd and similarly for the wavelets � =  j;k = 2jd=2 (2j � �k), k 2 Zd, so that �j is naturally viewed as the uni-form mesh 2�jZd. In the ase of a general domain 
 2 R , speial adaptationsof the basis funtions are required near the boundary �
 (see e.g. [68℄, [33℄,[3℄, [26℄, [40℄, [56℄, [70℄, [13℄).The pratial advantage of suh a wavelet setting is the possibility ofswithing between the standard disretization of f 2 Vj in the basis f'�g�2�jand its multisale representation in the basis f �gj�j<j, by means of fast O(N)deomposition reonstrution algorithms, where N � 2dj denotes the dimen-sion of Vj in the ase where 
 is bounded.An important feature of wavelet bases is the possibility of haraterizingthe smoothness of a funtion f through its wavelet oeÆients or the linearapproximation kf�Pjfk. Never less in next setion we will disuss extensively



Setion 1.3. Approximation & smoothness 19this topi, we would reall here a partiular result: for funtions of d variables,Sobolev spaes are haraterized bykfkHs � kP0fk2L2 +Xj�0 22sjkf � Pjfk2L2 �X�2� 22sj�jjd�j2; (1.2.5)whih reets the intuitive idea that the linear approximation error deays likeO(2�sj) or O(N�s=d), provided that f has s derivatives in L2.1.3 Approximation & smoothnessOne of the goal of the approximation theory is to relate the analytial prop-erties of arbitrary funtions (in partiular smoothness) with the auray oftheir approximation by simpler funtions, suh as polynomials, trigonometriseries or �nite elements.As an instanes we reall the following result of �nite element approxima-tion in L2-Sobolev spaes: if 
 is a polygonal domain, Th, 0 < h < hmax, afamily of regular triangulation with mesh size h, and Vh a �nite element spaebuilt from Th that ontains polynomials up to degree n � 1 and is ontainedin W s;2, then for s � t � n one has the estimateinfg2Vh kf � gkW s;2 � Cht�sjf jW t;2; (1.3.1)where C does not depend on f and h. For the multiresolution spaes Vj �Vh=2�j the above inequality takes the forminfg2Vj kf � gkW s;2 � C2�(t�s)jjf jW t;2: (1.3.2)These results express that a smoothness property implies an approximationrate. It turns out that a large number of smoothness lasses, inluding L2-Sobolev spaes, an be haraterized from the rate of deay of the approxima-tion error in the spaes Vj, or also from the summability and deay propertiesof the wavelet oeÆients.Let us now fous on the haraterization from the approximation error:given a sequene of approximation spaes Vj and introdueddistLp(f; Vj) := infg2Vj kf � gkLp;we would like to relate the propertydistLp(f; Vj) � O(2�sj);to some lassial notion of smoothness satis�ed by f . To be more preise weintrodue the following de�nition



20 Linear wavelet approximation Chapter 1De�nition If X is a Banah spae and (Vj)j�0 a nested sequene of subspaesof X suh that [j�0Vj is dense in X. For s > 0 and 1 � q � 1, we de�nethe approximation spae Asq(X) related to the sequene Vj byAsq(X) := ff 2 X : (2sjdistX(f; Vj))j�0 2 `qg:In the ase where X is a Lebesgue spae, we use the notation Asp;q := Asq(Lp).Roughly speaking, the spaeAsq(X) ontains those funtions suh that distX(f; Vj) �O(2�sj), with a tuned information provided by the extra parameter q. Onean hek that it is a proper subspae of X and it is a Banah spae whenequipped with the normkfkAsq(X) := kfkX + k(2sjdistX(f; Vj))j�0k`q :What we atually want is to prove that under spei� assumptions on themultiresolution approximation spaes, the identityAsp;q = Bsp;q (1.3.3)holds together with the norm equivaleneskfkBsp;q ' kfkAsp;q and jf jBsp;q ' jf jAsp;q : (1.3.4)Following [27℄, in order to prove (1.3.3) and (1.3.4) we need diret and inverseestimates. This is the topi of what follows.1.3.1 Diret estimatesLet us �rst ollet a preliminary result, originally due to Lebesgue,Lemma 1.3.1: If P is a bounded projetor from a Banah spae X to a losedsubspae Y , then for all f 2 X,infg2Y kf � gkX � kf � PfkX � (1 + kPk)) infg2Y kf � gkX;with kPk = supkfkX=1 kPfkX .Now we onsider the following result about the Lp stability of the projetorPj : Lp ! Vj.Theorem 1.3.1: Let 1 � p � 1. Assume that ' 2 Lp and ~' 2 Lp0 where1=p+1=p0 = 1. Then the projetors Pj are uniformly bounded in Lp. Moreoverthe basis 'j;k is Lp-stable, in the sense that the equivalenekXk2Zd k'j;kkLp � 2dj(1=2�1=p)k(k)k2Zdk`p; (1.3.5)holds with onstants that do not depend on j.



Setion 1.3. Approximation & smoothness 21Aording to Lemma 1.3.1 it follows that if Pj is Lp-stable uniformly in j, theninfg2Vj kf � gkLp � kf � PjfkLp; (1.3.6)i.e. the error estimate kf � PjfkLp is optimal in Vj.Now we are ready state a diret estimate for this partiular approximationproess [27℄:Theorem 1.3.2: Let 1 � p � 1. Assume that ' 2 Lp and ~' 2 Lp0 where1=p+ 1=p0 = 1. Then we havekf � PjfkLp . 2�njjf jWn;p; (1.3.7)where n� 1 is the order of polynomial exatness in Vj.An important variant of the diret estimate 1.3.7 is the Whitney estimate,whih involves the modulus of smoothness [27℄:Theorem 1.3.3: Let 1 � p � 1. Assume that ' 2 Lp and ~' 2 Lp0 where1=p+ 1=p0 = 1. Then we havekf � PjfkLp . !n(f; 2�j)p; (1.3.8)where n� 1 is the order of polynomial exatness in Vj.A simple orollary of the Whitney estimate is a diret estimate for generalBesov spaes [27℄.Corollary 1.3.1: Let 1 � p � 1. Assume that ' 2 Lp and ~' 2 Lp0 where1=p+ 1=p0 = 1. Then we havekf � PjfkLp . 2�jsjf jBsp;q ; (1.3.9)for 0 < s < n, where n� 1 is the order of polynomial exatness in Vj.1.3.2 Inverse estimatesInverse estimate takes into aount the smoothness properties of the approxi-mation spaes Vj [27℄:Theorem 1.3.4: Let 1 � p � 1. Assume that ' 2 Lp and ~' 2 Lp0 where1=p+ 1=p0 = 1 and that ' 2 W n;p. ThenkfkWn;p � C2njkfkLp; if f 2 Vj; (1.3.10)with a onstant C that does not depend on j.



22 Linear wavelet approximation Chapter 1Another type of inverse estimate involves the modulus of smoothness [27℄:Theorem 1.3.5: Let 1 � p � 1. Assume that ' 2 Lp and ~' 2 Lp0 where1=p+ 1=p0 = 1 and that ' 2 W n;p. Then we have!n(f; t)p � C[minf1; 2jtg℄nkfkLp; if f 2 Vj; (1.3.11)with a onstant C that does not depend on j.Our last inverse estimate deals with general Besov spaes of integer or fra-tional order [27℄.Theorem 1.3.6: Let 1 � p � 1. Assume that ' 2 Lp and ~' 2 Lp0 where1=p+ 1=p0 = 1 and that ' 2 Bsp;q. ThenkfkBsp;q � C2sjkfkLp if f 2 Vj; (1.3.12)with a onstant C that does not depend on j.By ombining the above diret and inverse estimates, we obtain more gen-eral diret and inverse estimates involving Besov norms on both side of theinequalities [27℄:Corollary 1.3.2: Let 1 � p; q1; q2 � 1 and 0 < s < t. Assume that ' 2 Lpand ~' 2 Lp0. If ' 2 Bsp;q1 and t < n where n � 1 is the degree of polynomialreprodution in Vj, one has the diret estimatekf � PjfkBsp;q1 . 2�j(t�s)jf jBtp;q2 : (1.3.13)When s and/or t are integers, these estimates also hold with the lassialSobolev spae W s;p and/or W t;p and t up to n.Proof: [27℄ First of all we note that:kf � PjfkBsp;q1 �Xl�j kPl+1f � PlfkBsp;q1 : (1.3.14)Combining the inverse estimate of Theorem 1.3.6 and the diret estimate ofCorollary 1.3.1, we obtainkPl+1f �PlfkBsp;q1 . 2slkPl+1f �PlfkLp . 2�l(t�s)jPl+1f �Plf jBtp;q2 : (1.3.15)This together with (1.3.14) yields the thesis. The ase of lassial Sobolevspaes is treated in the same way, using the diret and inverse estimate ofTheorem 1.3.2 and 1.3.4. 2



Setion 1.3. Approximation & smoothness 23Remark 1.3.1: Inequality (1.3.13) tells us that an error estimate O(2�j(t�s))in Bsp;p is ahieved by a linear method for funtions in Btp;p, with 0 < s < t.We will see in the next Chapter that the same error estimate in Bsp;p an beahieved by a nonlinear method for less regular funtions.Corollary 1.3.3: Let 1 � p; q1; q2 � 1 and 0 < s < t. Assume that ' 2 Lpand ~' 2 Lp0. If ' 2 Btp;q2 and s < n where n � 1 is the degree of polynomialreprodution in Vj, one has the inverse estimatekfkBtp;q2 . 2j(t�s)kfkBsp;q1 if f 2 Vj: (1.3.16)When s and/or t are integers, these estimates also hold with the lassialSobolev spae W s;p and/or W t;p and s up to n.Proof: [27℄ First we note that:kfkBtp;q2 � kP0fkBtp;q2 + j�1Xl=0 kPl+1f � PlfkBtp;q2 : (1.3.17)We learly have kP0fkBtp;q2 . kfkLp . kfkBsp;q1 . For the remaining termswe ombine the inverse estimate of Theorem 1.3.6 and the diret estimate ofCorollary 1.3.1 and obtainkPl+1f � PlfkBtp;q2 . 2tlkPl+1f � PlfkLp . 2�l(t�s)jf jBsp;q1 : (1.3.18)This together with (1.3.17) yields the inverse estimate of the thesis. The aseof lassial Sobolev spaes is treated in the same way, using the diret andinverse estimate of Theorem 1.3.2 and 1.3.4. 21.3.3 SmoothnessNow we are ready to prove [27℄ the haraterization (1.3.3) of the approxima-tion spae Asp;q in terms of the Besov smoothness:Theorem 1.3.7: Let 1 � p � 1. Assume � 2 Lp and ~� 2 Lp0, where1p + 1p0 = 1, then we have the norm equivaleneskfkBtp;q � kP0fkLp + k(2tjkQjfkLp)j�0k`q (1.3.19)and kfkAtp;q � kfkBtp;q ; (1.3.20)for all t < minfn; sg, where n � 1 is the order of polynomial reprodution ofthe Vj spae and s is suh that � 2 Bsp;qo for some q0.



24 Linear wavelet approximation Chapter 1In order to prove the Theorem we need the following two Lemmas (disreteHardy inequalities):Lemma 1.3.2: If (aj)j�0 is a positive sequene and bj = 2�mjPj̀=0 2m`a`,with 0 < s < m, one hask(2sjbj)j�0k`q . k(2sjaj)j�0k`q ;for all q 2 [1;1℄Proof: Let us �rst onsider the ase q = +1. Assuming aj � Ca2�sj wehave bj � Ca2mjPj̀=0 2(m�s)` . Ca2�sj.For q <1, we de�ne q0 suh that 1q + 1q0 = 1 and � = m�j2 > 0. Using H�olderinequality we obtainXj�0(2sjbj)q = Xj�0 2(s�m)qj  jX̀=0 2m`a`!q �� Xj�0 2(s�m)qj " jX̀=0 �2(m��)`a`�q#" jX̀=0 �2�`�q0#q=q0. Xj�0 2��qj " jX̀=0 �2(m��)`a`�q#= X̀�0 �2(m��)`a`�qXj�` 2��qj. X̀�0 �2m`a`�q : 2Lemma 1.3.3: If (aj)j�0 is a positive sequene and bj =P`�j a`, with s > 0,one has k(2sjbj)j�0k`q . k(2sjaj)j�0k`q ;for all q 2 [1;1℄Proof: The ase q = +1 is treated in the same way as in the previousLemma. For q < +1, we de�ne q0 suh that 1q + 1q0 = 1 and s0 = s=2. Using



Setion 1.3. Approximation & smoothness 25H�older inequality we haveXj�0(2sjbj)q = Xj�0 2sqj X̀�j a`!q �� Xj�0 2sqj "X̀�j �2s0`a`�q#"X̀�j �2�s0lq0�#q=q0. Xj�0 2s0qj "X̀�j �2s0`a`�q#= X̀�0 �2s0`a`�q X̀j=0 2s0qj. X̀�0 �2s`a`�q : 2Proof of Theorem 1.3.7: [27℄ Here we shall diretly ompare the modulusof smoothness whih is involved in the de�nition of the Besov spaes Btp;q andthe quantities kQjfkLp. In one diretion, from Theorem 1.3.6, we havedistLp(f; Vj) � kf � PjfkLp . !n(f; 2�j)p; (1.3.21)and thus kQjfkLp . !n(f; 2�j)p. It follows that the Asp;q norm and the righthand side of 1.3.19 are both ontrolled by the Bsp;q norm. In order to prove theonverse result, we remark that the inverse estimate of Theorem 1.3.6 impliesthe simpler inverse estimate!n(f; t)p . [minf1; t2jg℄skfkLp; if f 2 Vj: (1.3.22)Indeed this property holds for the values t = 2�l; l � j, by Theorem 1.3.6 andthe other values of t are treated by the monotoniity of !n(f; t)p.For f 2 Lp, we let fj 2 Vj be suh thatkf � fjkLp � 2distLp(f; Vj): (1.3.23)



26 Linear wavelet approximation Chapter 1We then have!n(f; 2�j) � !n(f0; 2�j) + jXl=0 !n(fl+1 � fl; 2�j)p + !n(f � fj; 2�j)p. 2�sjkf0kLp + 2�sj[ j�1Xl=0 2slkfl+1 � flkLp℄ + kf � fjkLp. 2�sjkf0kLp + 2�sj[ jXl=0 2slkf � flkLp℄. 2�sjkfkLp + 2�sj[ jXl=0 distLp(f; Vl)℄;where we used the inverse estimate 1.3.23.In order to onlude the proof, we apply Lemma 1.3.2 with al = distLp(f; Vl)and we an thus onlude that the Bsp;q norm is ontrolled by the Asp;q norm.We an do the same reasoning with Pjf instead of fj and replae distLp(f; Vj)by kf � PjfkLp for the haraterization of Bsp;q. Finally, one we note thatkf � PjfkLp �Pl�j kQlfkLp, we an use the Lemma 1.3.3 with al = kQlfkLpto replae kf � PjfkLp by kQjfkLp and onlude the proof. 21.4 Approximation & interpolation spaes1.4.1 Interpolation theory: an overviewIn the present setion we shall desribe a more general mehanism that allowsto identify the approximation spaes Asp;q(X) with spaes obtained by interpo-lation theory. Although this mehanism an be avoided when proving (1.3.3)and (1.3.4), its usefulness will appear in partiular in the nonlinear ontext.Interpolation spaes arise in the study of the following problem of analysis.Given two spaes X and Y , for whih spaes Z it is true that eah linearoperator T mapping X and Y boundedly into themselves automatially mapsZ boundedly into itself? Suh spaes Z are alled interpolation spaes for thepair X; Y and the problem is to onstrut and to haraterize the spae Z.The lassial result in this diretion is the Riesz-Thorin theorem, whih statesthat the spaes Lp, 1 < p < 1 are interpolation spaes for the pair L1; L1.There are two primary methods for onstruting interpolation spaes Z: theomplex method as developed by J.L. Lions and A.P. Calder�on and the realmethod of J.L. Lions and J. Peetre. We shall fous on the latter approah and



Setion 1.4. Approximation & interpolation spaes 27we give below some of its main features. A detailed treatment an be foundin [9℄, [8℄.Let X and Y be a pair of Banah funtion spaes. To suh a pair, we assoiatethe so-alled K-funtional de�ned for f 2 X + Y and t � 0 byK(f; t) = K(f; t; X; Y ) := infa2X;b2Y;a+b=f[kakX + tkbkY ℄:The funtional has some elementary properties:- it is ontinuous, nondereasing and onave with respet to t.- if X \Y is dense in Y , then K(f; 0) := 0. Similarly, if X \Y is dense inX, then the limit limt!+1K(f; t)=t = 0:For � 2℄0; 1[ and 1 � q � +1, we de�ne a family of intermediate spaesX \ Y � [X; Y ℄�;q � X + Y as follows: [X; Y ℄�;q onsists of those funtionssuh that kfk[X;Y ℄�;q := kt�qK(f; t)kLq(℄0;+1[;dt=t); (1.4.1)is �nite. One easily heks that the above de�ned intermediate spaes inheritthe Banah spaes struture of X and Y .In the present ontext we shall be interested in interpolation between spaesof representing various degrees of smoothness. In partiular we shall alwayswork in the situation where Y � X with a ontinuous embedding and Y isdense in X. A typial example is X = Lp and Y = Wm;p. In this spei�situation, we write K(f; t) = infg2Y kf � gkX + tkgkY ;and make a few additional remarks:- the K funtional is bounded at in�nity sine K(f; t) � kfkX :Therefore, the �niteness of (1.4.1) is equivalent tokt��K(f; t)kLq(℄0;A[;dt=t) < +1; (1.4.2)for some �xed A > 0 and we an use this modi�ed expression as anequivalent norm for [X; Y ℄�;q.- due to the monotoniity of K(f; t) in t, we also have an equivalent dis-rete norm given bykfk[X;Y ℄�;q := k(�jqK(f; ��j))j�0k`q ;for any �xed � > 1.



28 Linear wavelet approximation Chapter 11.4.2 Smoothness via interpolation spaesThe main result of this setion onnets approximation spaes Asp;q and inter-polation spaes [X; Y ℄�;q by means of diret and inverse estimates [27℄:Theorem 1.4.1: Assume Vj is a sequene of approximation spaesVj � Vj+1 � : : : � Y � X;suh that for some m > 0, one has a Jakson-type estimatedistX(f; Vj) = infg2Vj kf � gkX . 2�mjkfkY ; (1.4.3)and a Bernstein-type estimatekfkY . 2mjkfkX if f 2 Vj: (1.4.4)Then, for s 2℄0; m[, one has the norm equivalenek(2jsK(f; 2�mj))j�0k`q � kfkX + k(2jsdistX(f; Vj))j�0k`q ; (1.4.5)and thus [X; Y ℄�;q = Asq(X) for s = �m.Proof: [27℄ We need to ompare the K-funtional K(f; 2�mj) and the errorof best approximation distX(f; Vj). In one diretion, this omparison is simple:for all f 2 X, g 2 Y and gj 2 Vj, we havedistX(f; Vj) � kf � gjkX � kf � gkX + kg � gjkX : (1.4.6)Minimizing kg � gjkX over gj 2 Vj and using a Jakson-type estimate, weobtain distX(f; Vj) . kf � gkX + 2�mjkgkY : (1.4.7)Finally, we minimize over g 2 Y to obtaindistX(f; Vj) . K(f; 2�mj): (1.4.8)Sine kfkX . K(f; 1) (by the ontinuous embedding of Y into X and thetriangle inequality), we thus have proved that kfkAsq(X) . kfk[X;Y ℄�;q .In the other diretion, we let fj 2 Vj be suh thatkf � fjkX � 2distX(f; Vj); (1.4.9)



Setion 1.4. Approximation & interpolation spaes 29and we writeK(f; 2�mj) � kf � fjkX + 2�mjkfkY� kf � fjkX + 2�mj[kf0kY + kf1 � f0kY + : : :+ kfj � fj�1kY ℄. kf � fjkX + 2�mj[kf0kX + j�1Xl=0 2mlkfl+1 � flkX ℄. 2�mjkf0kX + 2�mj[ jXl=0 2mldistX(f; Vl)℄; (1.4.10)where we have used the inverse inequality (together with the fat that fl+1 �fl 2 Vl+1) and the inequality kfkX � kfkX + 2distX(f; V0) � 3kfkX:In order to onlude the proof, we �rst remark that the term 2�mjkfkX satis�esk(2sj2�mjkfkX)j�0k`q . kfkX (1.4.11)and we onentrate on the seond term. Using Lemma 1.3.2 (disrete Hardyinequality) with aj = distX(f; Vj) allows to estimate the weighted `q norm ofthe seond term and to onlude that kfk[X;Y ℄�;q . kfkAsq(X). 2The following variant [27℄ of the previous theorem deals with similar normequivalenes involving spei� approximation operators Pj, rather than theerror of best approximation distX(f; Vj)Theorem 1.4.2: Assume Vj is a sequene of approximation spaesVj � Vj+1 � : : : � Y � X;suppose that we have kPjf � fkX . 2�mjkfkY ;for a family of linear operators Pj : X ! Vj whih is uniformly bounded in X.Then, for s = �m, s 2℄0; m[, the Asq(X) and the [X; Y ℄�;q norms are equivalentto kP0fkX + k(2sjkf � PjfkX)j�0k`q ; (1.4.12)and to kP0fkX + k(2sjkQjfkX)j�0k`q (1.4.13)where Qj = Pj+1 � Pj.Proof: [27℄ We �rst onsider (1.4.12). In one diretion, sinedistX(f; Vj) � kf � PjfkX ; (1.4.14)



30 Linear wavelet approximation Chapter 1and kfkX � kP0fkX + kf � P0fkX ; (1.4.15)we learly have that the norm of Asq(X) is ontrolled by (1.4.12). In the otherdiretion, we operate as in the inequality (1.4.10) in the proof of Theorem 1.4.1:replaing fj by Pjf proves that the [X; Y ℄�;q norm is ontrolled by (1.4.12).We then turn to (1.4.13). In one diretion we havekQjfkX � kf � Pj+1fkX + kf � PjfkX ; (1.4.16)whih shows that (1.4.13) is ontrolled by (1.4.12). In the other diretion, wewrite kf � PjfkX �Xl�j kQlfkX: (1.4.17)Using Lemma 1.3.3 (disrete Hardy inequality) with aj = kQjfkX allows toonlude that (1.4.12) is ontrolled by (1.4.13). 2Now we want to prove the equivalene between Asp;q and Bsp;q and the normequivalene 1.3.4, by using the general interpolation results obtained above.The key observation is that Besov spaes are obtained by the real interpolationapplied to Sobolev spaes. For example the following result [62℄ is true ongeneral Lipshitz domains 
 2 R :Theorem 1.4.3: It holds Bsp;q = [Lp;W n;p℄�;q;with s = �n, � 2℄0; 1[.1.5 Wavelets & funtional spaesIn this setion we show how a large number of smoothness lasses an beharaterized from the summability and deay properties of the wavelet oef-�ients.1.5.1 Besov spaes with p � 1The following result gives an equivalent norm of Besov spaes Bsp;q, p; q � 1, interms of the wavelet oeÆients, by using haraterization (1.3.19) (obtainedthrough the "diret" way) or equivalently by using haraterization (1.4.12)(obtained through the \interpolation approah"):



Setion 1.5. Wavelets & funtional spaes 31Corollary 1.5.1: If f =P�2� � �, then we have the norm equivalenekfkBsp;q � k�2sj2d( 12� 1p )jk(�)�2�jk�j k`q ; (1.5.1)under the assumptions of Theorem 1.3.7.Proof: It suÆes to remark that for j � 0, we have the equivalenekQjfkLp � 2d(1=2�1=p)jk(�)�2�jk`p; (1.5.2)by the same arguments as for the proof of Theorem 1.3.1. 2This last result also shows that wavelet bases are unonditional bases for allthe Besov spaes in the above range: the onvergene of the series holds in theorresponding norm without being a�eted by a rearrangement or a hange ofsign of the oeÆients, sine it only depends on the �niteness of the right-handside of (4.2.4).1.5.2 Besov spaes with 0 < p < 1So far, we have only onsidered values of p in the range [1;1℄, whereas Besovspaes an be de�ned for 0 < p < 1. In partiular the ase 0 < p < 1 turnsout to be ruial for nonlinear approximation. Here we sketh, following [27℄,how to extend the above results to the ase 0 < p < 1.A �rst result is that, although we do not have the Lp boundness of Pj westill have some Lp stability for the saling funtion basis. Here we ontinueto assume that ('; ~') are a pair of ompatly supported biorthogonal salingfuntions, with ' 2 Lr and ~' 2 Lr0, for some r � 1, 1=r0 + 1=r = 1.Theorem 1.5.1: Assuming that ' 2 Lp, for p > 0, one has the Lp stabilityproperty kXk k'j;kkLp � 2dj(1=2�1=p)k(k)kk`p; (1.5.3)with onstants that do not depend on j.An immediate onsequene of Theorem 1.5.1 is that we an extend the inverseinequalities of Theorems 1.3.5 and 1.3.6 to the ase p < 1.Theorem 1.5.2: Under the assumption of the Theorem 1.5.1 and if ' 2 Bnp;q,for some q > 0, one has!n(f; t)p � C[minf1; t2jg℄nkfkLp if f 2 Vj: (1.5.4)If ' 2 Bsp;q one has kfkBsp;q . 2sjkfkLp if f 2 Vj: (1.5.5)



32 Linear wavelet approximation Chapter 1If we want now to extend the Whitney estimate (1.3.8) to the ase p < 1, weare faing the problem that Lp funtions are not neessarily distributions andthat the operator Pj is not a-priori well de�ned in these spaes (unless we putrestritions on s). One way to irumvent this problem is to onsider the errorof best-approximation distLp(f; Vj) rather than kf � PjfkLp.Theorem 1.5.3: Under the same assumptions as in Theorem 1.5.1, we havedistLp(f; Vj) . !n(f; 2�j)p; (1.5.6)where n� 1 is the order of polynomial exatness in Vj.By using Theorems 1.5.2 and 1.5.3 it is possible to extend [27℄ the identityAsp;q = Bsp;q to all possible values of p and q:Theorem 1.5.4: Assuming that ' 2 Lp, for p > 0, we have the norm equiv-alene kfkAtp;q � kfkBtp;q ; (1.5.7)for all t < min(n; s), where n � 1 is the order of polynomial reprodution ofthe Vj spaes and s is suh that ' 2 Bsp;q0, for some q0 > 0.If we now want to use the spei� projetors Pj or the wavelet oeÆients toharaterize the Bsp;q-norm for p < 1, we are obliged to impose ondition s suhthat Pjf will at least be well de�ned on the orresponding spae. We shallnow see that suh haraterizations are feasible if s is large enough so thatBsp;q is embedded in some Lr, r � 1. By using the above results it is possibleto prove [27℄ the following result whih extends the haraterization of Besovspaes to the ase 0 < p < 1:Theorem 1.5.5: Assume that ' 2 Lr and ' 2 Lr0 for some r 2 [1;1℄,1=r + 1=r0 = 1 or that � 2 C0 and ~' is a Radon measure, in whih ase weset r =1. Then, for 0 < p � r, one has the norm equivalenekfkBsp;q � kP0fkLp + k(2sjkQjfkLp)j�0k`q ; (1.5.8)for all s > 0 suh that d(1=p� 1=r) < s < min(t; n), where n� 1 is the orderof polynomial reprodution in Vj and t is suh that � 2 Btp;q0, for some q0. Iff =P�2� � � is the deomposition of f into the orresponding wavelet basis,we also have the norm equivalenekfkBsp;q � k�2sj2d( 12� 1p )jk(�)�2�jk�j��1 k`q ;under the same assumptions.



Setion 1.5. Wavelets & funtional spaes 331.5.3 Charaterization of negative smoothnessFor s < 0, Besov spaes are usually de�ned by duality for p; q � 1:B�sp0;q0 := (Bsp;q)�; (1.5.9)with 1=p + 1=p0 = 1 and 1=q + 1=q0 = 1. The haraterization of suh dualspaes relies on the haraterization of the orresponding primal spae by thedual multisale deomposition:Theorem 1.5.6: Assuming that the dual projetors are suh thatkfkBsp;q � kP �0 fkLp + k(2sjkQ�jfkLp)j�0k`q (1.5.10)for some s > 0 and p; q � 1, we then havekfkB�sp0;q0 � kP0fkLp0 + k(2�sjkQjfkLp0 )j�0k`q0 (1.5.11)with 1=p+ 1=p0 = 1. We also have the norm equivalenekfkB�sp0;q0 � k(2�sj2d(1=2�1=p0)jk(�)�2�jk`p0 )j��1k`q0 ; (1.5.12)if f =P�2� � �.1.5.4 The Hilbert aseIn the partiular ase of Sobolev spaes, we have thus proved the norm equiva-lene for a regularity index whih is either stritly positive or stritly negative:kfk2Hs � kP0fk2L2 +Xj�0 22jskQjfk2L2 �X�2� 22j�jsj�j2: (1.5.13)The above equivalene for s = 0, whih orresponds to L2, means that f �g�2�,and by duality f ~ �g�2�, are Riesz bases for L2:kfkL2 'X�2� j�j2 'X�2� j~�j2 (1.5.14)with ~� = (f; ~ �). Di�erent methods exist to prove norm equivalene (1.5.14):by using for example interpolation theory [27℄, or stable multisale transfor-mations [38℄.



34 Linear wavelet approximation Chapter 11.5.5 Charaterization of Lp spaesWe know that L2 identi�es with B02;2. By using elementary interpolation prop-erties of weighted `p spaes [27℄, one obtains the norm equivalenekfkB0p;q � k(2d(1=2�1=p)jk(�)�2�jk`p)j��1k`q ; (1.5.15)provided that the wavelet basis allows to haraterize B"p;q1 and B�"p;q2 for some� > 0 and q1; q2 > 0.However we annot identify Lp with B0p;q, for any q > 0, if p 6= 2. This reetsthe fat that Lp spaes do not belong to the sale of Besov spaes when p 6= 2.Conerning suh Lp spaes, we an formulate two basi questions:1. does the wavelet expansion of an arbitrary funtion f 2 Lp onvergeunonditionally in Lp?2. is there a simple haraterization of Lp by the size of the wavelet oeÆ-ients?The answer is negative for L1, sine it is not separable, and for L1, whih isknown to possess no unonditional basis. For the ase 1 < p <1, a positiveanswer to the �rst question is provided by the real value theory developed byCalderon and Zygmund in order to study the ontinuity properties of opera-tors.Finally the haraterization of Lp norms from the size properties of the waveletoeÆients is also possible for 1 < p < 1, by means of a square funtion,de�ned for f =P�2� � � bySf(x) = [X�2� j�j2j �(x)j2℄1=2: (1.5.16)Clearly we have kfkL2 � kSfkL2. Moreover, using the lassial Khinhineinequality [76℄ allows to prove [27℄ the following norm equivalene:kfkLp � kSfkLp (1.5.17)for 1 < p <1.1.5.6 Bounded domains and boundary onditionsIt is possible to extend the results of previous setions, by haraterizing fun-tions spaes related to a bounded domain 
 � R , with presribed boundaryonditions, in terms of their multisale deomposition. Following [27℄ we �x



Setion 1.5. Wavelets & funtional spaes 35some general assumptions on our domain: 
 should have a simple geometry,expressed by a onformal partition
 = [ni=1Si;into simpliial subdomains: eah Si is the image of the unit simplexS := f0 � x1 + : : :+ xd � 1g;by an aÆne transformation. By \onformal" we mean that a fae of an Siis either part of the boundary � or oinides with a fae of another Sj. Wealso assume that 
 is onneted in the sense that for all j; l 2 f1; : : : ; ng thereexists a sequene i0; : : : ; im, suh that i0 = j and im = l and suh that Sikand Sik+1 have a ommon fae. Clearly, polygons and polyedrons fall in thisategory. More general urved domains or manifolds are also onerned here,provided that they an be smoothly parametrized by suh a simple referenedomains.We denote by C1(�; m) the spae of smooth funtions de�ned on 
 whih van-ish at order m on �. This means that f 2 C1(�; m) if and only if f 2 C1(
)and jf(x)j � C[dist(x;�)℄m+1. We then de�ne the spaes W s;p(�; m)(resp.Bsp;q(�; m)) as the losure of C1(�; m) in W s;p(resp. Bsp;q). We have thefollowing result [27℄.Theorem 1.5.7: Assume that ' 2 Lr and ~' 2 Lr0 for some r 2 [1;1℄,1=r + 1=r0 = 1, or that ' 2 C0 and ~' is a Radon measure, in whih ase weset r = 1. Also assume that Vj reprodues polynomials of degree n � 1 withatness m at the boundary and that ' 2 Bsp;q0. Then for 0 < p � r, one hasthe norm equivalenekfkBtp;q � kP0fkLp + k(2tjkQjfkLp)j�0k`q ; (1.5.18)for all f 2 Btp;q(�; m) with t > 0 suh that d(1=p�1=r) < t < min(s; n) and t�1=p is not an integer among 0; : : : ; m. If f =P�2� � � is the deompositionof f into the orresponding wavelet basis, we also have the norm equivalenekfkBsp;q � k�2sj2d( 12� 1p )jk(�)�2�jk�j��1 k`q ;under the same assumptions.Finally we note [27℄ that also the haraterizations of negative smoothness andLp spaes extends to the type of domains that we are onsidering here.



36 Linear wavelet approximation Chapter 1



Chapter 2 NONLINEAR WAVELETAPPROXIMATION
"Well!" said Gandalf at last. "What are you thinking about? Have youdeided what to do?". "I suppose I must keep the Ring and guard it, at leastfor the present, whatever it may do to me" answered Frodo. "But I feel verysmall, and very uprooted, and well { desperate. The Enemy is so strong andterrible".In the blak abyss there appeared a single Eye that slowly grew, until it �llednearly all the Mirror. The Eye was rimmed with �re, but was itself glazed,yellow as a at's, wathful and intent, and the blak slit of its pupil opened ona pit, a window into nothing. (J.R.R. Tolkien, The Fellowship of the Ring)Wavelet bases allow an eÆient representation to haraterise isolated sin-gularities of funtions, thanks to a partiularly good loation both in spae andfrequeny of eah element of the basis. This amounts to say that the deom-position of a funtion with isolated singularities is launary, in the sense thatvery few oeÆients of its wavelet deomposition are non negligible. Then,given suh a funtion, a simple strategy for building a ompressed approx-imation is possible by getting rid of the oeÆients that are smaller thana presribed threshold, or equivalently by hoosing the N largest, in abso-lute value, oeÆients. In other words for funtions whih are not uniformlyregular, possibly better approximations are obtained by hoosing the approx-imation spae depending on the funtion itself. This means the we look for aspae VE := Spanf � : � 2 Eg, where E = E(f) � � is a �nite subset ofindies whih depends on the funtion f itself, and for an approximation ~f tof belonging to VE. Typially E ould result to be the union of two subsets ofindexes: the �rst allowing a oarse approximation of f and the seond aimingto resolve the loal singularities of f . If the target funtion f is smooth ona region we an use a ourse resolution on that region, by putting terms in37



38 Nonlinear wavelet approximation Chapter 2the approximation orresponding to low frequeny-terms. On regions wherethe target funtion is not smooth we use higher resolution, by taking in theapproximation more wavelet funtions orresponding to higher-frequenies.The questions that arise from these observations are:(i) How does one pratially build the set E(f) and the approximation ~f?(ii) Is there a preise haraterization of the funtions that an be approxi-mated with a given rate of approximation, by this adaptive strategy?Let us introdue the spae�N = fX�2E � � : #(E) � Ng; (2.0.1)of all possible N -term ombinations of wavelets, and the error of best N -termapproximation in some norm k � kX de�ned bydistX(f;�N ) = infE��;#(E)�N inf(�)�2E kf �X�2E � �kX : (2.0.2)It is well understood that �N is not a linear spae: if f and g are in �N wean only onlude that f + g 2 �2NSuppose now one has aess to the wavelet expansion f = P�2� � � ofthe funtion f to be approximated: a natural N -term approximation in X isprovided by the hoie fN = X�2EN � �; (2.0.3)where EN = EN (f;X) is the set of indies orresponding to the N largestontributions k� �kX . Then, we shall see that for several interesting hoieof the spae X, we have kf � fNkX . distX(f;�N); (2.0.4)i.e. a simple thresholding of the largest ontributions in the wavelet deom-position provides a near optimal N -term approximation.2.1 Nonlinear approximation in L2Let us onsider for the moment N -term approximation in the L2-norm: we areinterested in the behaviour of distL2(f;�N) as N goes to in�nity, where �N isde�ned as above. In order to simplify this example, we assume that f �g�2�is an orthonormal basis for L2. Thus any f 2 L2 an be deomposed intof =X�2� � �; � = (f;  �);



Setion 2.1. Nonlinear approximation in L2 39and we an de�ne the set �N = �N(f) � � of the N largest oeÆients of f ,i.e. suh that #(�N ) = N and� 2 �N ; �0 =2 �N ) j�0j � j�j: (2.1.1)If the modulus of several oeÆients of f take the same value, we simplytake for �N any of the sets of ardinality N that satis�es 2.1.1. From theorthonormality of the basis, we learly havedistL2(f;�N ) = kf �X� � �kL2 = 0�X�=2�N j�j21A1=2 : (2.1.2)Let us now onsider the spaes Bsq;q, where s > 0 and q is suh that 1=q =1=2 + s=d. We assume here that Bsq;q is haraterized by (4.2.4):kfkBsp;q � k�2sj2d( 12� 1p )jk(�)�2�jk�j k`q :For suh indies, we note that this equivalene an be simpli�edkfkBsq;q � k(�)�2�k`q : (2.1.3)A �rst immediate onsequene of (2.1.3) is the embedding of Bsq;q in L2, sine`q is trivially embedded in `2. Note that that suh an embedding is not om-pat: the anonial sequene (sn)n�0 = ((Æn;k)k�0)n�0 is uniformly bounded in`q but does not ontain any subsequene that onverges in `2.In order to haraterize Besov spaes in terms of the L2-error of nonlinearwavelet approximation, we follow the same strategy as in the linear ontextand we try to obtain three ingredients: a diret estimate, an inverse estimateand a result of interpolation theory.If we now de�ne by (n)n�1 any rearrangement of the oeÆients (�)�2�with dereasing moduli, i.e. suh that jn+1j � jnj, we also havenjnjq �Xk�1 jkjq � kfkqBsq;q ; (2.1.4)whih yields jnj . kfkBsq;qn�1=q: (2.1.5)



40 Nonlinear wavelet approximation Chapter 2Taking the dereasing rearrangement n to be suh that fn : n � Ng =f� : � 2 �Ng, it follows that we havedistL2(f;�N) = kf � X�2�N � �kL2=  Xn>N jnj2!1=2. N1=2�1=qkfkqBsq;q :We thus have obtained a Jakson-type estimatedistL2(f;�N ) . N�s=dkfkqBsq;q ; (2.1.6)with respet to the non linear spaes �N .On the other hand, if f 2 �N , we also have by H�older inequalitykfkBsq;q . k(�)�2�k`q � N1=q�1=2k(�)�2�k`2 = N s=dkfkL2; (2.1.7)i.e. a Bernstein-type estimate.The equivalene (2.1.3) also shows that for 0 < t < s and 1=r = 1=2+ t=d, wehave the interpolation identityBtr;r = [L2; Bsq;q℄�;r; � = t=s; (2.1.8)whih is a simple re-expression of [`2; `q℄�;r = `r.Now if we were in the linear ontext we ould haraterize funtions spaesby the error of linear approximation. It turns out that a similar result asin linear ase also holds in the present nonlinear ontext using the followingTheorem [27℄.Theorem 2.1.1: Assume that X and Y are quasi-normed spaes and thatSj; j � 0, is a sequene of non linear approximation spaesSj � Sj+1 � : : : � Y � X; (2.1.9)suh that for some m > 0, one has a Jakson type estimatedistX(f; Sj) = infg2Sj kf � gk . 2�mjkfkY ; (2.1.10)and a Bernstein-type estimatekfkY . 2mjkfkX if f 2 Sj: (2.1.11)



Setion 2.2. Nonlinear approximation in Bsp;p 41Moreover assume that there exists a �xed integer a suh thatSj + Sj � Sj+a; j � 0: (2.1.12)Then, for t 2℄0; m[, one has the norm equivalenek(2jtK(f; 2�mj))j�0k`q � kfkX + k(2jtdistX(f; Sj))j�0k`q ; (2.1.13)and thus [X; Y ℄�;q = Atq(X) for t = �m.From the monotoniity of the sequene distL2(f;�N ), we have the equivaleneXj�0 [2jtdistL2(f; Sj)℄q �XN�1N�1[N t=ddistL2(f;�N)℄q: (2.1.14)The �niteness of the above quantities for q <1 is a slightly stronger propertythan distL2(f;�N ) . N�t=d whih was initially obtained. Aording to theabove theorem, with X = L2 and Y = Bsq;q, this last property haraterizesthe intermediate spae [L2; Bsq;q℄�;1 = At2;1; (2.1.15)with t = �s, whih annot be thought as a Besov spae. One an hek thatthis spae is also haraterized by the property that (�)�2� belongs to theweak spae `rw, i.e. #f� 2 � : j�j � "g � C"�t: (2.1.16)Hene the property f 2 Btr;r, 1=r = t=d + 1=2 is almost equivalent to therate distL2(f;�N ) . N�t=d, while the exat haraterization passes throughthe stronger propertyXN�1N�1[N t=ddistL2(f;�N )℄r <1;or the weak spae `rw.2.2 Nonlinear approximation in Bsp;pIt is not diÆult to extend the above results to the ase where the erroris measured in more general Besov spae of the type Bsp;p. Following [27℄we anel the orthonormality assumption whih is irrelevant at this stage ofgenerality and we prove the following result.



42 Nonlinear wavelet approximation Chapter 2Lemma 2.2.1: Let assume that Bsp;p admits a wavelet haraterization of thetype (4.2.4). If f =P�2� � �, thenkf � X�2�N � �kBsp;p . distBsp;p(f;�N); (2.2.1)where �N = �N(f; Bsp;p) is the set of the indies orresponding to the N largestontributions k� �kBsp;p or equivalently the N largest 2(s+d=2�d=p)j�jj�j.Proof: [27℄ The norm equivalene (4.2.4) shows that k �kBsp;p � 2(s+d=2�d=p)j�j.It an thus be reformulated askfkBsp;p � k(k� �kBsp;p)�2�k`p: (2.2.2)Clearly the N -term approximation P�2�N � � minimizes the distane be-tween f and �N when measured in this equivalent norm for Bsp;p. It is thus anear minimizer for the Bsp;p norm in the sense of (2.2.1). 2Now we are ready to state and prove [27℄ the following result dealing withthe haraterization of Besov spaes Btq;q, with 1=q = t=d + 1=2 in terms ofthe nonlinear approximation error measured in the norm of Bsp;p, with 1=p =s=d+ 1=2Theorem 2.2.1: Assume that the spaes Btq;q, t � s = d(1=q � 1=p) admit awavelet haraterization of the type (4.2.4) for t 2 [s; s0℄, s0 > s. Then fort 2℄s; s0[; t� s = d(1=q � 1=p), we have the norm equivalenekfkBtq;q � kfkBsp;p + k(2j(t�s)distBsp;p(f; Sj))j�0k`q : (2.2.3)Proof: [27℄ If t > s and t� s = d=q � d=p, the norm equivalene (4.2.4) anbe rewritten as kfkBtq;q � k(k� �kBsp;p)�2�k`q ; (2.2.4)where � are the wavelet oeÆients of f . We an then proeed in a similarway as in the partiular ase of approximation in L2. Denoting by ("n)n�1the dereasing rearrangement of the sequene (k� �kBsp;p)�2�, we remark thatsine n"qn �Xk�1 "qk . kfkqBtq;q ; (2.2.5)we have the estimate "n . n�1=qkfkBtq;q : (2.2.6)



Setion 2.3. Nonlinear approximation in Lp; 1 < p <1 43Denoting by �N a set of indies de�ned as above, we obtaindistBsp;p(f;�N) � kf � X�2�N � �kBsp;p. (Xn�N "pn)1=p. N1=p�1=qkfkBtq;q :We have thus established the Jakson type estimatedistBsp;p(f;�N) � N�(t�s)=dkfkBtq;q : (2.2.7)If f 2 �N , then using H�older inequality and (2.2.4) yieldskfkBtq;q . N1=q�1=pk(k� �kBsp;p)�2�k`p = N (t�s)=dkfkBsp;p; (2.2.8)i.e. the orresponding Bernstein-type estimate.Finally it remains to observe that Besov spaes Btq;q, t� s = d=q� d=p areinterpolation spaes: for s < t < s0, t� s = d=q� d=p and s0� s = d=p0� d=p,we have the interpolation identityBtq;q = [Bsp;p; Bs0p0;p0℄�;q; � = (t� s)=(s0 � s); (2.2.9)whih is a re-expression of [`p; `p0℄�;q = `q, with 1=p = s=d + 1=2 and 1=p0 =s0=d+ 1=2:By Theorem (2.1.1), with X = Bsp;p and Y = Btq;q, we thus obtained the normequivalene (2.2.3). 22.2.1 Linear versus NonlinearLet us onsider (2.2.7). The analog linear result (1.3.13) tells us that thesame error rate O(N�(t�s)=d) in Bsp;p is ahieved by a linear method (i.e. withN = Nj = dim(Vj)) for funtions in Btp;p, whih is a smaller spae than Btq;q.It should be noted that, as t beomes large, the funtions in the spae Btp;p be-ome smooth in the lassial sense, while Btq;q might still ontain disontinuousfuntions.2.3 Nonlinear approximation in Lp; 1 < p <1It is important to note that the result of previous setion are easy to prove,due to the simple link existing between Besov spaes and `p spaes through



44 Nonlinear wavelet approximation Chapter 2wavelet deomposition. The study of non linear approximation in Lp norm ismore diÆult sine we annot identify Lp to a B0p;p for p 6= 2. Anyway swithingfrom B0p;p to Lp does not seriously a�et the results of N -terms approximationfor 1 < p <1.Following [27℄ we �rst reall two lemmas, due to Temlyakov [77℄, that allowto estimate the Lp norm of a linear ombination of wavelets aording to thesize of the oeÆients:Lemma 2.3.1: Let 1 < p <1 and f �g�2� a wavelet basis onstruted fromsaling funtions in Lp. If E is a �nite subset of � of ardinality #(E) <1,then kX�2E � �kLp � C#(E)1=p sup� k� �kLp; (2.3.1)where C is independent of #(E).Lemma 2.3.2: Let 1 < p < 1 and f �g�2� (resp. f � �g�2�) a (resp. dual)wavelet basis onstruted from saling funtions in Lp (resp. in Lp0, with 1=p0+1=p = 1). If E is a �nite subset of � of ardinality #(E) <1, thenkX�2E � �kLp � C#(E)1=p inf� k� �kLp; (2.3.2)where C is independent of #(E).Using the above two Lemmas it is possible to prove [77℄ that a near-best N -term approximation in Lp an be ahieved by a simple thresholding proedure:kf � X�2�N � �kLp . distLp(f;�N);where �N is the set of indies orresponding to the N largest ontributionsk� �kLp.2.3.1 Jakson and Bernstein result in Lp, 1 < p <1Now we prove [27℄ Jakson and Bernstein estimate for N -term approximationin Lp.Theorem 2.3.1: Let 1 < p < 1 and f �g�2� a wavelet basis onstrutedfrom saling funtions in Lp. Assuming that the spae Bsq;q, 1=q = 1=p + s=dadmits a wavelet haraterization of the type (4.2.4), we have the Jaksonestimate distLp(f;�N ) . N�s=dkfkBsq;q ; (2.3.3)and for f 2 �N , the Bernstein estimatekfkBsq;q . N s=dkfkLp: (2.3.4)



Setion 2.3. Nonlinear approximation in Lp; 1 < p <1 45Proof: [27℄ Let f 2 Bsq;q. We remark that the norm equivalene (4.2.4) alsowrites kfkBsq;q � k(k� �kLp)�2�k`q : (2.3.5)In partiular, we have#f� : k� �kLp � "g . "�qkfkqBsq;q : (2.3.6)It follows that there exists a onstant C > 0 (depending on the onstant inthe equivalene (2.3.5)), suh that if we de�neAj = f� : C2�j=qkfkBsq;q � k� �kLp � C2�(j�1)=qkfkBsq;qg; (2.3.7)we then have #(Aj) � 2j: (2.3.8)From (2.3.1) we an evaluate the Lp norm of TAjf =P�2Aj � � bykTAjkLp . 2�j=qkfkBsq;q#(Aj)1=p � 2j(1=p�1=q)kfkBsq;q : (2.3.9)Now de�ne Bj = [j�1l=0Al. By (2.3.8), we have #(Bj) � 2j. For Sj := �N , wethus have distLp(f; Sj) � kt� TBjfkLp� Xl�j kTAlfkLp. Xl�j 2l(1=p�1=q)kfkBsq;q. 2j(1=p�1=q)kfkBsq;q = 2�js=dkfkBsq;q :By the monotoniity of distLp(f; SN), this implies the diret estimate (2.3.3)for all N .In order to prove the Bernstein estimate, we distinguish two ases: p � 2and p � 2.If p � 2, we have kfkB0p;p � k(k� �kLp)�2�k`p . kfkLp: (2.3.10)One way of heking (2.3.10) is to use an interpolation argument: the propertyholds when p = 2 for whih one atually has the equivalene kfkB02;2 � kfkL2and p =1 sinek� �kL1 . 2j�jd=2j�j = 2j�jd=2j(f; ~ �)j . kfkL1: (2.3.11)



46 Nonlinear wavelet approximation Chapter 2In the ase where p � 2, let f =P�2E � � 2 �N . We then estimate kfkBsq;qas follows: kfkBsq;q . X�2E k� �kqLp= X�2E j�jqk �kpLpk �kq�pLp. Z
X�2E j�jqj �jp2d(1=2�1=p)(q�p)j�j. Z
X�2E j�jqj �jp[2d(1=p�1=2)j�jj �j℄p�q. Z
[Sf(x))℄qRE(x)dx;where we applied H�older's inequality on sequenes to obtain the last line. HereSf(x) is the square funtion and RE(x) an be estimated as follows:RE(x) = �X�2E[2d(1=p�1=2)j�jj �(x)j℄2(p�q)=(2�q)�(2�q)=2. � X�2E; �(x)6=0 22dj�j(p�q)=(2p�qp)�(2�q)=2. 2j(x)d(1�q=p);where j(x) = maxfj � �1 : x 2 supp( �); for some � 2 Ejg. UsingH�older's inequality, we thus obtainkfkqBsq;q . kSfkq=pLp (Z
 2j(x)ddx)1�q=p. kfkLp[Xj��1#(
j)2jd℄1�q=p. kfkLp[Xj��1Nj℄1�q=p= N1�q=pkfkLp;where 
j := fx 2 
 : j(x) = jg. 22.3.2 The main resultBy using Theorem 2.3.1 and interpolation properties for the Asp;r spaes andfor the Besov spaes Bsq;q, 1=q = 1=p + s=d, it is possible to prove [27℄ theanalog of the Theorem 2.2.1 for Besov spaes Bsq;q, with s < 1:



Setion 2.4. Nonlinear approximation of sequenes 47Theorem 2.3.2: Let 1 < p < 1 and f �g�2� a wavelet basis onstrutedfrom saling funtions in Lp. Assuming that for 0 < s < t the spae Bsq;q,1=q = 1=p + s=d admits a wavelet haraterization of the type (4.2.4), thenone also has the norm equivalenekfkBsq;q � kfkLp + k(2jsdistL2(f; Sj))j�0k`q : (2.3.12)Remark 2.3.1: We refer to [27℄ and referenes therein for the ases p � 1and p =1 whih are not overed by the results of this setion.2.4 Nonlinear approximation of sequenesIn this setion we re-obtain expliitly a result of nonlinear approximation inthe Sobolev spae Hs, by ombining nonlinear approximation of sequenes andthe norm equivalenes in terms of the summability properties of the waveletoeÆients.We saw that in nonlinear approximation in a wavelet framework, a fun-tion u 2 L2(
), whose wavelet deomposition is u =P� u� �, an be approx-imated by a launary series; that is by an approximation v to u, belonging tothe non linear spae�N = fv =X�2� v� � : v = fv�g�2� 2 �Ng; (2.4.1)ontaining all the funtions of L2(
), whose wavelet oeÆients belong to theset �N = fv 2 `2(�) : #f� : v� 6= 0g � Ngof sequenes with at most N elements di�erent from zero. The set �N ontainsthe funtions of L2(
), whih an be expressed as a linear ombination of atmost N wavelets. A nonlinear projetorPN : L2(
)! �Nan be built as follows: given u =P� u� �, let us sort the sequene fju�jg�2�in dereasing order. We denote fju�(k)jgk2N the oeÆient of rank k:ju�(k)j � ju�(k+1)j; with k > 0:Hene the image PN (u) is de�ned by:PN (u) = NXn=1 u�(n) �(n);



48 Nonlinear wavelet approximation Chapter 2that is only the N greatest (in absolute value) oeÆients of u are retained.By abuse of notation we will also indiate byPN : `2 ! �Nthe operator assoiating to the sequene u = fu�g, the oeÆients of thefuntion PN (P� u� �). The auray of the orresponding approximation isdiretly related to `�w regularity of the sequene of oeÆients of u, as statedby the following theorem [47℄, [48℄:Theorem 2.4.1: Let u = P�2� u� �. If u = fu�g� 2 `�w, with � suh that0 < � < 2, thenku� PNuk`2 . infw2�N ku� wk`2 . N�( 1�� 12 )kuk`� ;where the impliit onstants in the bounds depend only on � .Proof: We sketh the proof. We have#f� 2 � : j�j � "g �M"�� :Let �j := f� : 2�j < j�j < 2�j+1g. Then for eah k = 1; 2; : : :, we havekXj=�1#�j � CM2k� (2.4.2)with C depending only on � .Let Sj := P�2�j � � and Tk := Pkj=�1 Sj. Then Tk 2 �N with N =CM2k� . We have kf � TkkL2 � 1Xj=k+1kSjkL2 : (2.4.3)We �x j > k and estimate kSjkL2. Sine j�j � 2�j+1 for all � 2 �j, wehave from Lemma 2.3.1 and (2.4.2),kSjkL2 � C2�j#�1=2j � CM1=22j(�=2�1):We therefore onlude from (2.4.3) thatkf � TkkL2 � CM1=2 1Xj=k+1 2j(�=2�1) � CM(M1=�2k)�=2�1;beause �=2� 1 < 0. In other words for N ' M2k� , we haveinfw2�N ku� wk`2 � CMN1=2�1=� :



Setion 2.4. Nonlinear approximation of sequenes 49To onlude it is suÆient to reall the near optimality of the nonlinear pro-jetor PN in L2: ku� PNuk`2 . infw2�N ku� wk`2: 2In partiular, as `� � `�w, if � is suh that 1� = rd + 12 , using norm equivalene(4.2.4), we obtain kX� u� �kBr�;� (
) ' kuk`� (2.4.4)and from Theorem 2.4.1 we reover the above result of nonlinear approximationin L2: if u belongs to Br�;� (
), with � suh that 1� = rd + 12 , theninfw2�N ku� wkL2(
) . ku� PNukL2(
) . N�( 1�� 12 )kukBs�;�(
):In other words, one we normalise in L2(
) the wavelet basis f �g, the naturalfuntional setting of nonlinear approximation in L2(
) is the sale of Besovspaes Br�;� (
).2.4.1 Nonlinear approximation in HsLet us now onsider a resaled version f � �g� of the wavelet basis f �g�, where� � = ��js �, for � 2 �j. If � is suh that 1� = rd + 12 , from norm equivalene(4.2.4) we obtain: kX� u� � �kBr+s�;� (
) ' kuk`� : (2.4.5)Applying now Theorem 2.4.1 and norm equivalene (1.5.13) for Sobolev spaesto the normalised sequene u, we obtain the following result of non linearapproximation in Hs(
):Corollary 2.4.1: Let u 2 Bs+r�;� (
), with � suh that 1=� = r=d+ 1=2, thenku� PNukHs(
) . infw2�N ku� wkHs(
) . N�( 1�� 12 )kukBs+r�;� (
);where the impliit onstants in the bounds depend only on � .That is when we onsider nonlinear approximation in Hs(
) the natural fun-tional setting is the sale of Besov spaes Br+s�;� (
), where � is de�ned by therelation 1� = rd + 12 .



50 Nonlinear wavelet approximation Chapter 22.5 Towards adaptive wavelet methodsWavelet bases are being inreasingly used in the numerial solution of partialdi�erential and integral equations. There are many aspets in a disretizationproedure for suh equations that an bene�t from the features of these bases.Wavelets share with other multilevel methods the apability of easily preondi-tioning the disrete realizations of symmetri positive de�nite operators. Moretypial of wavelets is their orthogonality to ertain lasses of smooth funtions(e.g. polynomials), a feature that an be exploited in the ompression of densematries and, in a more general ontext, in the design of adaptive disretiza-tion strategies. The �nite-dimensional spae, whih is used in a Galerkin-typeapproximation, is adaptively onstruted by inluding in it preisely thosewavelet basis funtions that have the potential of representing the most sig-ni�ant strutures of the solution. From this point of view, adaptive waveletmethods an be viewed as meshless methods or spae re�nement methods, witha highly exible mehanism for adding and removing degrees of freedom. Non-linear approximation provides a natural benhmark for an adaptive sheme:if k � kX is the norm where we measure the error between the solution u of aPDE and its numerial approximation and if it holds ku� uNkX . N�s for afamily of N -term wavelet approximations uN 2 �N , then an optimal adaptivesheme should provide N -terms approximate solutions ~uN 2 �N , suh thatone also has ku� ~uNkX . N�s.2.5.1 Wavelet preonditioningOne of the interest of multisale disretizations is the possibility of preondi-tioning large systems whih arise from ellipti operator equations. A generalsetting for suh equations is the following: H is a Hilbert spae embedded inL2(
) and a(�; �) is a bilinear form on H �H suh thata(u; u) � kuk2H: (2.5.1)Let H 0 be the dual spae of H. Given f 2 H 0, we searh for u 2 H suh thata(u; v) = (f; v); for all v 2 H: (2.5.2)It is well known that from Lax-Milgram lemma, this problem has a uniquesolution. If we de�ne the operator A by(Au; v) = a(u; v); for all v 2 H;the equivalene (2.5.1) implies that A is an isomorphism from H to H 0, so thatu is also the unique solution in H ofAu = f: (2.5.3)



Setion 2.5. Towards adaptive wavelet methods 51If Vh is a subspae of H, the Galerkin approximation of u in Vh is lassiallyde�ned by uh 2 Vh suh thata(uh; vh) = (f; vh); for all vh 2 Vh: (2.5.4)If Vh is �nite dimensional, the approximated problem (2.5.4) amounts in solv-ing a linear system. Here we are interested in the situation where H isan L2 Sobolev spae: lassial instanes are given by the Poisson equation��u = f with Dirihelet onditions, where H = H10 , or the Helmholtz equa-tion u��u = f , with Neumann boundary onditions, whereH = H1. For suhequations it is known that the matries resulting from Galerkin disretizationsin the �nite element spaes are ill-onditioned, i.e. their onditions numbergrows like h�2s, where h is the mesh size and s is the order of the orrespondingSobolev spae H, where 2s is the order of the ellipti operator. We remarkthat ellipti equations involving integral operators of negative order also enterthe above lass of problems [41℄.The use of multilevel methods for preonditioning suh matries is linkedto the possibility of haraterizing the L2 Sobolev spae Hs (possibly withboundary onditions) by means of wavelet oeÆients:kfk2Hs �X�2� 22sj�jj�j2: (2.5.5)Let us onsider the Galerkin disretization (2.5.4) on a multiresolution approx-imation spae VJ � H, orresponding to a mesh size 2�J and we denote by uJthe orresponding solution. For the omputation of uJ we use the multisalebasis f �gj�j<J and we obtain a systemAJUJ = FJ ; (2.5.6)where UJ is the oordinate vetor of uJ in the basis f �gj�j<J , FJ = f(f;  �)gj�j<Jand AJ = f(A �;  �)gj�j;j�j<J is the sti�ness matrix.A result relating the norm equivalene to wavelet preonditioning was �rstproposed in [59℄:Theorem 2.5.1: Consider the diagonal matrix DJ with (DJ)�;� = (22sj�jÆ�;�),where j�j; j�j < J . The two following statements are equivalent:(i) H is haraterized by a norm equivalenekfk2H �X�2� 22sj�jj�j2; (2.5.7)



52 Nonlinear wavelet approximation Chapter 2(ii) The ondition number K(D�1J AJ) = K((D�1=2J AJD�1=2) is bounded in-dependently of J .Proof: The property (ii) is equivalent to(DJU; U) � (AJU; U); (2.5.8)with onstants independent of the vetor U and the sale level J . From thede�nition of AJ , this an also be expressed bya(vJ ; vJ) � Xj�j<J 22sj�jj�j2; (2.5.9)for all vJ = Pj�j<J � � in VJ . Sine a(u; u) � kuk2H, (2.5.9) is equivalentto (2:5:7) for all f 2 VJ . By density of the VJ multiresolution spaes, this isequivalent to (2.5.7) for all f 2 H. 22.5.2 Compression of operatorsAnother advantage of the wavelet basis is the sparse struture that results fromthe multisale disretization of most operators involved in partial di�erentialand integral equations and the good properties suh operators exhibit whenapply on funtions that also have a sparse multisale representation. Givenan operator A ating on funtions de�ned on a domain 
 � R and a waveletbasis f �g�2�, we are interested in evaluating the entriesm�;� = (A �;  �): (2.5.10)In order to treat di�erent examples within a uni�ed framework [27℄, weshall now introdue general lasses of matries assoiated to operators throughwavelet bases.De�nition Let s 2 R and �; � > 0. A matrix M belongs to the lass Ms�;�if and only if its entries satisfy the estimatejm�;�j � CM2s(j�j+j�j)2�(d=2+�)jj�j�j�jjd(�; �)�(d+�) (2.5.11)where d(�; �) := 1 + 2minfj�j;j�jgdist(supp( �); supp( �)). We denote by M�;�this lass when s = 0.The fator 2s(j�j+j�j) desribes the growth or deay (depending on the sign ofs, hene depending on the order of the operator) of the entries of M along thediagonal, i.e. the multipliative e�et of the operator on the di�erent sales.The parameter s thus indiates the order of the operator: for instane s = 2if A = �



Setion 2.5. Towards adaptive wavelet methods 53Remark 2.5.1: Note that the diagonal bi-in�nite matrix Ds, with (Ds)�;� =2sj�jÆ�;� allows to renormalize M , in the sense that ~M = D�1s MD�1s satis�esthe estimate (2.5.11) with s = 0, i.e. belongs to the lass M�;�. Suh arenormalization is exatly the preonditioning proess on �nite matrix desribedin the previous setion.The fator 2�jj�j�j�jj(d=2+�) desribes the deay of the entries away from thediagonal bloks orresponding to j�j = j�j. Finally the fator (1 + d(�; �0))��desribes the deay of the entries away from the diagonal within eah bloksorresponding to �xed values of j�j and j�j.A basi tool for the study of the lasses Ms�;� is the Shur lemma that wereall below.Lemma 2.5.1: Let M = (m�;�)�;�2� be a matrix indexed by �. Assume thatthere exists a sequene of positive numbers (!�)�2� and a onstant C suh thatX�2� !�jm�;�j+X�2� !�jm�;�j � C!� (2.5.12)for all � 2 �. Then M de�nes a bounded operator in `2(�) with kMk � C.A �rst appliation of the Shur lemma is the following result [27℄.Theorem 2.5.2: If �; � > 0, then any M 2 M�;� de�nes a bounded operatorin `2(�). In turn, any matrix M 2 M�;� together with a Riesz basis ( �)� 2 �of L2 de�nes an L2 bounded operator A represented by M in this basis.Proof: [27℄ We shall use the Shur Lemma with !� = 2�dj�j=2. From (2.5.11),we �rst obtain!�1� X�2� !�jm�;�j . 2dj�j=2X�2� 2�dj�j=22�(d=2+�)jj��j�jjd(�; �)�(d+�). 2dj�j=2Xj�0 2�dj=22�(d=2+�)jj�j�jj Xj�j2�j d(�; �)�(d+�):Sine � > 0 the last fator Pj�j2�j d(�; �)�(d+�) is bounded by a uniformonstant if j � j�j and by 2d(j�j�j) if j � j�j. Splitting the sum in j aordingto these two ases, we �nally obtain!�1� X�2� !�jm�;�j . Xj�0 2djj�j�jj=22�(d=2+�)jj�j�jj. 2Xl�0 2��l <1;whih shows that (2.5.12) holds with suh weights. 2



54 Nonlinear wavelet approximation Chapter 2Let us now introdue the weighted spaes`2t (�) := f(�)�2� : k(�)�2�k2̀2t :=X�2� 22tj�jj�j2 <1g:We already noted that for M 2 Ms�;�, for s 6= 0, the preonditioned matrix~M = D�1s MD�1s ;with Ds = (2sj�jÆ�;�)�;� belongs to the lassM�;�. We remark that Ds de�nesan isomorphism from `2t to `2t+s. Combining these remarks with the aboveTheorem, we an desribe the ation of M = Ds ~MDs, as follows [27℄:Corollary 2.5.1: If �; � > 0, then any M 2 Ms�;� de�nes a bounded operatorfrom `2s to `2�s. In turn, any matrix M 2 Ms�;� together with a wavelet basis( �)� 2 � whih haraterize Hs(
) and H�s(
) (possibly with boundary on-ditions) de�nes a bounded operator A from Hs(
) to H�s(
), represented byM in this basis.The next step is to show that the estimate (2.5.11) allows to ompress thematries in the lassMs�;� by disarding ertain entries. We �rst onsider thease s = 0 [27℄.Theorem 2.5.3: Let M�;� and t < inf(�=d; �=d). For all N � 0 one andisard the entries of M in suh a way that the resulting matrix MN has Nnonzero entries per rows and olumns and satis�eskM �MNk . N�t; (2.5.13)in the operator norm `2(�).Proof: [27℄ We �rst trunate the matrix M in sale: for a given J > 0, wedisard m�;� if jj�j � j�jj � J . Denoting by AJ the resulting matrix, we anuse the same tehnique as in the proof of the above Theorem (Shur lemmawith weights 2dj�j=2) to measure the error kM �AJk in the operator norm. Bya very similar omputation, we obtainkM � AJk .Xl�J 2��l . 2��J :We next trunate AJ in spae, by preserving in eah remaining blok of AJthe entries m�;� suh that d(�; �) � k(jj�j � j�jj) where the funtion k is tobe determined. We denote by BJ the resulting matrix. Using again the Shur



Setion 2.5. Towards adaptive wavelet methods 55lemma in the same way as in the proof of the above Theorem, we evaluate theerror kAJ � BJk by the supremum in � of!�1� j�j+JXj=j�j�J X�2�j !�jbJ�;� �m�;�j;and we obtain an estimated ontribution of 2��J for eah term in j by takingk(l) = 2J�=�2l(1��=�). The total error is thus estimated bykM �BJk . J2��J ;with the number of nonzero entries per rows and olumns in BJ is estimatedby N(J) . PJl=0 k(l)d. In the ase where � > � (resp. � < �) this sum isbounded by the �rst term K(0)d = 2Jd�=� (resp. last term K(J) = 2dJ). Inthe ase � = �, we obtain N(J) . J2dJ . In all ases, it follows from theevaluation of N(J) and the error kM �BJk . J2��J thatkM � BJk . N(J)�t;if t is suh that t < inff�=d; �=dg. Sine J ranges over all positive integers,this is enough to onlude the proof. 2We an derive simple onsequenes of this result onerning the sparsityof the operators in the lasses Ms�;� by the same onsiderations as for thestudy of boundedness properties: for M 2 Ms�;�, we apply the ompressionproess of the above Theorem to the preonditioned matrix ~M = D�1s MD�1s .Denoting by ~MN the ompressed version of the matrix ~M , we then de�neMN = Ds ~MNDs. This new matrix has also N entries per rows and olumnsand approximates M in the sense expressed by the following Corollary.Corollary 2.5.2: Let M�;� and t < inf(�=d; �=d). For all N � 0 one andisard the entries of M in suh a way that the resulting matrix MN has Nnonzero entries per rows and olumns and satis�eskM �MNk . N�t; (2.5.14)in the norm of operators from `2s(�) to `2�s(�).The last result [27℄ onerns the appliation of sparse matries of the typethat we have introdued in this setion on sparse vetors, possibly resulting ofadaptive multisale disretizations for the solution of PDE's. In the ontextof nonlinear approximation theory, the sparsity of suh a vetor is preiselydesribed by the rate of deay of the error ofN -term approximation: an in�nite



56 Nonlinear wavelet approximation Chapter 2vetor U has a degree of sparsity t > 0 in some metri X, if there exists asequene of vetors (UN )N�0 suh that UN has N nonzero oordinates andsuh that kU � UNkX . N�t: (2.5.15)In the ase where X = `2 the vetors UN are simply obtained by retaining theN largest oordinates of U and property (2.5.15) is equivalent to U 2 `pw with1=p = 1=2 + t.Theorem 2.5.4: The matries M 2 M�;� de�ne bounded operator in `2\ `pw,for 1=p = 1=2+t and t < minf�=d; �=dg. In other words a vetor U of sparsityin `2 is mapped by M onto a vetor V =MU with the same property.Proof: Following [27℄ we will diretly onstrut an N -term approximationto V = MU from the N -term approximation of U . For j � 0 we denoteby Uj the vetor that onsists of the 2j largest oordinates of U . From theassumptions we know that kU � UjkX . 2�tj:Fixing r 2℄t;minf�=d; �=dg[, we an de�ne, aording to the above Theorem,trunated operators Mj suh that Mj has at most 2(1�")j nonzero entries perrows and olumns with " > 0 andkM �Mjk . 2�rj:We de�ne an approximation to V =MU byVj := AjU0+Aj�1(U1�U0)+ : : :+A0(Uj�Uj�1) = AjU0+ jXl=1 Aj�l(Ul�Ul�1):It is possible to evaluate the number of nonzero entries of Vj byN(j) � 2(1�")j + jXl=1 2(1�")j�l2l�1 . 2j:Finally we an evaluate the error of approximation as follows.kV � Vjk = kM(U � Uj) + j�1Xl=0 (M �Ml)(Uj�l � Uj�l�1) + (M �Mj)U0k� kM(U � Uj)k+ j�1Xl=0 kM �MlkkUj�l � Uj�l�1k+ kM �MjkkU0k. 2�tj + 2�tj j�1Xl=0 2(t�r)l + 2�rj. 2�tj: (2.5.16)



Setion 2.5. Towards adaptive wavelet methods 57Sine j ranges over all possible integers, we have thus proved that V 2 `pw,with 1=p = 1=2 + t. 2We an again derive [27℄ an immediate Corollary.Corollary 2.5.3: Let M 2 Ms�;� and U a vetor of sparsity t in `2s withs < inff�=d; �=dg. Then V =MU has sparsity t in the dual spae `2�s.
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Chapter 3ADAPTIVE SCHEMES FORLINEAR EQUATIONS
And Minas Morgul answered. There was a are of livid lightnings: forks ofblue ame springing up from the tower and from the enirling hills into thesullen louds. The earth groaned; and out of the ity there ame a ry.(...)As the terrible ry ended, falling bak through a long sikening wail tosilene, Frodo slowly raised his head. Aross the narrow valley the walls ofthe evil ity stood, and its avernous gate, shaped like an open mouth withgleaming teeth, was gaping wide. And out of the gate an army ame. All thathost was lad in sable, dark as the night. Against the wan walls and theluminous pavement of the road Frodo ould see them, small blak �gures inrank upon rank, marhing swiftly and silently, passing outwards in an endlessstream. Before them went a great avalry of horsemen moving like orderedshadows, and at their head was one greater than all the rest: a Rider allblak, save that on his hooded head he had an helm like a rown that ikeredwith a perilous light.(...) Frodo waited, and as he waited, he felt, more urgentthan ever before, the ommand that he should put on the Ring. But he knewthat the Ring would only betray him, and that he had not, even if he put iton, the Power to fae the Morgul-king { not yet.(J.R.R. Tolkien, The Two Towers)3.1 IntrodutionIn the study of numerial algorithms for the solution of PDE's, adaptive meth-ods are ommonly used when the solution u exhibits loalized singularities.Typially suh methods use informations at a given step to produe, for thenext iteration, a new approximation to u with a �ner resolution near the singu-larities. Adaptive proedures are partiular form of nonlinear approximationof the unknown solution u. The approximation spae in whih we look forthe numerial solution is not a linear spae, sine the degrees of freedom are61



62 Adaptive shemes for linear equations Chapter 3not hosen a priori, but depend on the solution u. In this ontext, what onewould like to do is to �x the number N of degrees of freedoms and to design analgorithm able to �nd the best possible approximation of the solution u amongall possible approximations (of a give type) with N degrees of freedoms, andthis, with a omputational ost growing only linearly with N .In the wavelet framework, thanks to nonlinear approximation tehniques,it is possible to approximate a given funtion with an element of the nonlin-ear spae �N ontaining funtions, whose wavelet expansions have at most Nnon-vanishing oeÆients. When the funtion to be approximated is known,it is easy to de�ne a nonlinear projetion PN whih allows to get, given u,the best N -terms wavelet approximation, by simply keeping the N biggest (inabsolute value) oeÆient (properly resaled, depending on the norm in whihthe approximation is measured).Unfortunately, in the ase we are interested in, the funtion to be approx-imated is not known. If we onsider for instane the problem of buildinga numerial sheme to approximate the solution u to the partial di�erentialequation�div(aru) = f in 
 � Rd ; u = 0 on �
; (3.1.1)one possibility is to look for iterative approximation shemes in whih byde�nition the iterates belong to the nonlinear spae �N .On an abstrat level, we write down a onvergent iterative sheme forthe ontinuous problem, and then we fore the iterate to belong to �N , bysimply projeting it onto suh spae using the simple approximation strategyfor known funtions desribed above.On a pratial point of view, this is ahieved by following the "new ap-proah" (see Introdution):1. transform the given PDE into an equivalent in�nite linear system whoseunknown is the in�nite vetor of wavelet oeÆients of the unknownsolution.2. write down a onvergent iterative sheme for the in�nite linear system.3. at eah iteration approximate (possibly adaptively) the in�nite matrix-vetor multipliation by a �nite matrix-vetor, by performing a pre-vision step, aiming at individuating a priori �nite number of relevantoeÆients, whih will be possibly piked up by the nonlinear projetionstep, while the remaining will be most ertainly disarded.



Setion 3.1. Introdution 63Convergene of algorithms of this type strongly relies on a key feature ofwavelets, namely what is usually referred to as wavelet preonditioning (seeSetion 2.5.1): equation (3.1.1) an be rewritten in an equivalent form asin�nite system: Au = g; with A;A�1 2 L(`2; `2); (3.1.2)where u is the in�nite array of the oeÆients u� of the unknown solutionu = P� u� � �, expressed with respet to the basis f � �g� obtain by suitablyrenormalizing the basis f �g�.Based on these ideas, we present a omputable sheme, whih we proveto be onvergent to an approximate solution with almost the same approxi-mation rate as the one whih is ahieved, (under the same Besov smoothnessassumptions) by the nonlinear approximation of a given funtion. In parti-ular, as mentioned in the Introdution, we deal diretly with the problem ofthe approximate appliation of a ertain lass of linear operators in waveletoordinates, providing an expliit strategy.Let us for the moment assume that we have seleted two sequenes Nn and �nN0 < N1 < � � �Nn1 < Nn2 < � � � < N�n = N�0 > �1 > � � � �n1 > �n2 > � � � > ��nWe are interested in shemes of the following type, where, by abuse of nota-tion, we will also denote by PN , the operator that assoiates to the oeÆientsof a funtion u, the vetor of oeÆients of its nonlinear projetion PN (u):Nonlinear RihardsonStep 1. Initialization: set u(0) = 0.Step 2. Until n � �n, repeatStep 2.1 Prevision: selet a �nite dimensional set V (n) � � suh that, de-noted by Sn the linear subspae of `2 of the form Sn = fv 2`2 : v� = 0; � 62 V (n)g, we haveinfv2Sn ku(n) + �r(n) � vk`2 � C�n;where r(n) = g�Au(n) denotes the residual and where the onstantC depends only on initial data.



64 Adaptive shemes for linear equations Chapter 3Step 2.2 Compute an approximation~r(n) 2 fv = (v�)�2� 2 `2 : � 62 V (n) ) v� = 0gof the residual r(n), in suh a way that kr(n) � ~r(n)k`2 � C�n.Step 2.3 Projetion: set u(n+1) = PNn(u(n) + �~r(n)):Step 2.4 Update: n + 1! nThe onstrution of a suitable set V (n), whih is possible thanks to the goodspae frequeny loalization properties of wavelets, is a neessary step for analgorithm of this type to be pratially implemented. Neverless we postponesuh an issue and we �rst onentrate on the study of the inuene of thenonlinear projetion step in the Rihardson type algorithm.The outline is as follows: in setion 3.2 we reall some useful results aboutwavelets and nonlinear approximation, in setion 3.3 we state the problem tosolve, in setion 3.4 we disuss a non-omputable abstrat sheme to study theinuene of the nonlinear projetor step and �nally in setion 3.6.3 we analyzethe Nonlinear Rihardson sheme and the onstrution of the prevision set�(n).3.2 Notations and Preliminary resultsIn the following we will employ the notation A . B to indiate that thequantity A is bounded from above by a positive onstant times the quantityB, while A ' B will stand for A . B . A.For simpliity let us �x the following funtional setting: let 
 � R be abounded domain, and suppose we are given a Riesz basis f �g�2�, � = [1j=0�j,for L2(
), suh that, for some parameter � > 1, the following norm equivalenefor the Besov spaes Bsp;q(
) holds for all s; p; q, 0 � s � S, 0 < p <1, q > 0:kX� u� �kqBsp;q(
) 'Xj �q(s+ d2� dp )j0�X�2�j ju�jp1Aq=p ; (3.2.1)The splitting of the index set � as � = [1j=0�j, orresponds to distinguish-ing funtions \living" at di�erent sales (� 2 �j $ (supp �) � 2�j). It is



Setion 3.2. Notations and Preliminary results 65beyond the goal of this paper to desribe how and under whih onditions on
 suh bases f �g� are onstruted (see, among others, [24℄, [39℄).Sine Hs(
) = Bs2;2(
), from equivalene (3.2.1) we dedue that for all s,0 � s � S : kX� u� � �kHs(
) ' kuk`2; with � � = ��js �: (3.2.2)Moreover, when onsidering nonlinear approximation in Hs, the sale of Besovspaes Br+s�;� (
) { where � = �(r) is de�ned by the relation 1� = rd + 12 { willnaturally appear. For these spaes the norm equivalenes in terms of waveletoeÆients are quite simple; indeed using again equivalene (3.2.1), we obtain:kX� u� � �kBr+s�;� (
) ' kuk`� ; � 2 �j; with 1� = rd + 12 (3.2.3)where again � � = ��js �.In the following it will also be useful to onsider the spae of funtionswhose oeÆients, with respet to the resaled basis f � �g�, are in the weak{`�spae `�w, whih an be de�ned as the spae of sequenes u = fu�g� for whihthere exists a onstant C suh that#f� : ju�j � �g � C��� ; (3.2.4)the norm kuk�̀�w being de�ned as the smallest C whih veri�es relation (3.2.4).It is possible to prove that `� � `�w, whih implies that the oeÆients fu�g�of a funtion u 2 Br+s�;� verify fu�g� 2 `�w.Let us now reall some fats about nonlinear wavelet approximation: thespae �N � V ,�N = fu =X� � � :  = f�g�2� 2 �Ngwith �N = f 2 `2(�) : #f� 2 � : � 6= 0g � Ng;is a nonlinear spae ontaining funtions in L2(
) whih an be represented asthe linear ombination of at most N elements of the basis f � �g�. A nonlinearprojetor PN : L2(
)! �N an be de�ned as follows: given u =P� u� � �, letus introdue a dereasing rearrangement fju�(n)jgn2N of the sequene fju�jg�2�,



66 Adaptive shemes for linear equations Chapter 3where the appliation n 2 N �! �(n) 2 � is bijetive and veri�es n < m =)ju�(n)j � ju�(m)j; PN (u) is then de�ned by:PN (u) = NXn=1 u�(n) � �(n);that is only the N greatest (in absolute value) oeÆients of u are retained.We reall that by abuse of notation we will also indiate by PN : `2 ! �Nthe operator assoiating to the sequene u the oeÆients of the funtionPN (P� u� �). The auray of the orresponding approximation is diretlyrelated to `�w regularity of the sequene of oeÆients of u, as stated by thefollowing theorem [47℄, [48℄.Theorem 3.2.1: Let u = P�2� u� � �, with � � = ��js �, s � S. If fu�g� 2`�w then ku� PNuk`2 . infw2�N ku� wk`2 . N�( 1�+ 12 )kuk`w�where the impliit onstants in the bounds depend only on � .3.3 The ProblemLet us now onsider a linear operator A : Hs(
) ! H�s(
), 0 < s � S,(H�s(
) denoting here the dual of Hs(
)) and let the orresponding bilinearform a : Hs(
)�Hs(
)! R be de�ned as:a(u; v) :=< Au; v >; 8u; v 2 Hs(
);where < :; : > denotes the duality pairing between H�s and Hs. We assumethat the bilinear form a is ontinuous oerive, that is; 8u; v 2 Hs(
):a(u; v) �MkukHs(
)kvkHs(
); a(u; u) � �kuk2Hs(
):We onsider the following problem: given g 2 H�s(
), �nd u 2 Hs(
) suhthat: Au = g: (3.3.1)Under our assumptions it is well known that for any g 2 H�s(
) equation(3.3.1) has a unique solution; this is also the unique solution of the equivalentvariational problem: �nd u 2 Hs suh thata(u; v) =< g; v >; 8v 2 Hs(
): (3.3.2)



Setion 3.4. Nonlinear Rihardson I: the basi sheme 673.4 Nonlinear Rihardson I: the basi shemeDepending on the regularity of the data and on the domain 
, the solution ofproblem (3.3.2) may be smooth, or it may present some singularity (see e.g.[66℄, [55℄, [61℄, [37℄). In the last ase, the fat that using some adaptive teh-nique { in whih the approximating spae is tailored to the funtion u itself {is neessary in order to get a good approximation rate, is well aepted. Theresults in Setion 3.2 on nonlinear approximation allow to rigorously formalizesuh fat and provide, in the wavelet ontext, a simple and eÆient strategyfor adaptively approximating u, if this was given. However, in the partialdi�erential equations framework the funtion that one needs to approximateis not known. We would then like a strategy for designing an approximationspae for the (unknown) solution u of the given PDE with the same approxi-mation property that one would get if the solution was known.In order to do so, aording to the abstrat approah desribed in Se-tion 4.1, the �rst step is to transform the given ontinuous problem into an1-dimensional problem: we express u in terms of the resaled basis f � �g�,� � = 2�js �, and we rewrite the initial ontinuous problem (3.3.2) in terms ofthe Fourier oeÆients u = fu�g� of the unknown solutionu =X� u� � �;thus obtaining an 1-dimensional linear system of equations:Au = g (3.4.1)where A = (a�;�)�;�2�; a�;� =< A � �; � � >; g = fg�g� =< f; � � >;are a bi-in�nite matrix and an in�nite array respetively. It is not diÆult tohek (see Setions 2.5.1 and 2.5.2) that A 2 L(`2; `2) and that it is boundedlyinvertible, that is: kAkL(`2;`2) . C1; kA�1kL(`2;`2) . C2:The seond step is to write down a onvergent numerial sheme for the1-dimensional problem: we design a method �nding an approximate solutionto the 1-dimensional problem (3.4.1) in �N . To this end let us assume thatthe basis f � �g� and the operator A are suh that it holds for some �0 < 2:A 2 L(`�0w ; `�0w ): (3.4.2)



68 Adaptive shemes for linear equations Chapter 3We remark that under suitable spae-frequeny loalization properties of thewavelet basis f � �g�, ondition (3.6) holds for a wide lass of di�erential andpseudo-di�erential operators ([28℄).The abstrat sheme we want here to disuss is the following, where the tol-erane tol learly depends on the number N of degrees of freedom:basi nonlinear RihardsonbeginInput: N; tolu(0) = 0while kr(n)k`2 > tol doompute r(n)as r(n) = g �Au(n)updateu(n+1) = PN (u(n) + �r(n)) 2 �NendOutput: uN =P� u(n+1)� � �endThis is not a omputable numerial sheme sine it involves operations onin�nite matries and vetors. Suh sheme will be oupled in setion 3.6.3with suitable ompression steps applied both to the operatorA and to the righthand side g, whih will allow to atually implement it eÆiently. Neverthelessit is interesting to onsider suh a sheme in order to analyze the inuene ofthe nonlinear operator PN . In partiular the main result of this setion is thefollowing Theorem:Theorem 3.4.1: Let A 2 L(`�0w ; `�0w ) \ L(`2; `2) for some �0 < 2. Then thereexists a ~� < 2 and a �0 > 0 suh that, for all �, 0 < � < �0, it holds (theimpliit onstants in the inequalities depending on �)(i) stability: if g 2 `2, we havekunk`2 . kgk`2; 8n 2 N ; (3.4.3)



Setion 3.4. Nonlinear Rihardson I: the basi sheme 69(ii) approximation error estimate: if g 2 `�w, ~� < � � 2 then, setting en =un � u, it holds for some � < 1:kenk`2 . �nkeok`2 + 11� �N�( 1�+ 12 ); (3.4.4)In order to prove theorem 3.4.1 we need to reall the following lemma [28℄.Lemma 3.4.1: Let A 2 L(`�0w ; `�0w ) \ L(`2; `2), for some �0 < 2. Then thereexists a onstant �0 > 0 and a ~� , �0 � ~� < 2, suh that 8� with 0 � � � �0 itholds: kI � �AkL(`2;`2) � � < 1; (3.4.5)kI � �AkL(`�w;`�w) �  < 1; for all �; ~� � � � 2 (3.4.6)Proof of Theorem 3.4.1: First of all we observe that PN is `2-ontrative.Then, sine un 2 `2 (only N oeÆients are non zero by de�nition), usingLemma 3.4.1, by (3.4.5) one has:kun+1k`2 = kPN(un+�(g�Aun))k`2 � kun+�(g�Aun)k`2 � k�gk`2+�kunk`2:By iterating this bound we obtain:kun+1k`2 �  nXi=0 �i! k�gk`2 + �n+1ku0k`2 ;whih, sine � < 1 and u0 = 0, yields (3.4.3).Now let "n = PN(un + �(g �Aun))� (un + �(g �Aun)):A simple alulation yields:en+1 � en + �Aen = "n;whih, taking the `2 norm and using (3.4.5) again, yieldsken+1k`2 � �kenk`2 + k"nk`2 : (3.4.7)Iterating (3.4.7), we then obtain:ken+1k`2 = nXk=0 �n�kk�kk`2 + �n+1ke0k`2 � �max0�k�n k"kk`2� nXi=0 �i + �n+1ke0k`2:(3.4.8)



70 Adaptive shemes for linear equations Chapter 3The sum on the right hand side of (3.4.8) onverges (� < 1) and then we anwrite: ken+1k`2 � 11� � maxk k"kk`2 + �n+1ke0k`2: (3.4.9)To onlude, we only need to give an uniform bound on k"kk`2. Using Lemma3.4.1 it is not diÆult to show that g 2 `�w implies uk + �(g�Auk) 2 `�w with:kuk + �(g �A uk)k`�w � C; (3.4.10)uniformly in k. Indeed kI��AkL(`�w;`�w) �  < 1 and sine PN is `�w ontrative,setting wk+1 = uk + �(g �Auk)we an write:kwk+1k`�w = k(I � �A)uk + �gk`�w � k(I � �A)ukk`�w + k�gk`�w � kukk`�w + k�gk`�w= kPN (wk)k`�w + k�gk`�w � kwkk`�w + k�gk`�w :By iterating this bound, we obtain:kwk+1k`�w � kkw1k`�w + kXi=0 i! k�gk`�w � �1� kgk`�w ; 8k;whih yields (3.4.10). Thanks to (3.4.10), by applying Theorem 3.2.1, we havethat: maxk k"kk`2 . N�( 1�+ 12 )maxk kuk + �(g �Auk)k`�w � N�( 1�+ 12 )C(g):Combining suh bound with (3.4.9), implies the thesis. 2Using norm equivalene (3.2.2), this yields the following orollary.Corollary 3.4.1: Let u be the solution of (3.3.2) and let g belong to Br+s�;� (
),with r suh that 0 < r + s � minfS; d=~� � d=2g and with � given by 1=� =r=d + 1=2. If u(n)N = P� u(n)� � � is the non linear approximation of u at stepn given by the non-linear Rihardson sheme with � < �0, then it holds, forsome � < 1:ku� u(n)N kHs(
) � �nku� u(0)N kHs(
) + C1� �N� rd ; 8n 2 N :Remark 3.4.1: Though for simpliity we set u0 = 0 throughout this setion,it is not diÆult to realize that the result holds unhanged also for any initialguess in �N .



Setion 3.5. Numerial results 713.5 Numerial resultsIn this setion, we test basi nonlinear Rihardson sheme on a very simple1D model problem, namely, let T be the unit irle,Problem 3.5.1: �nd u 2 H1(T) suh thata(u; v) = (f; v) for all v 2 H1(T);where a(u; v) = RTu0v0 + RTuv and (f; v) = RT fv.The tests we will show in the following aim at studying only the inuene ofthe nonlinear projetor PN at eah iteration of the sheme and they won't faethe problem of the e�etive onstrution of the prevision sets. The tests arereferred to di�erent hoies of the funtion f . In partiular we will study thebehavior of the error in L2 and H1 norm as a funtion of1. the number n of iterations,2. the number N of degrees of freedom to be retained.3.5.1 Two asesWe performed the numerial tests, by using the pair f �; ~ �g of biorthogonalB-spline wavelets B2:2 on T. We will refer to biorthogonal B-splines waveletsB ~N:N to signify that Vj and ~Vj are the subspaes of B-splines of order N � 1and ~N � 1 respetively (with N; ~N � 1) de�ned on the uniform grid obtainedby splitting the unit interval into 2j equal segments.Let us denote by uJ =Pj�j<J u� � the wavelet deomposition of the exatsolution u at resolution J and by unmaxN the N -terms approximation to uJ ,built after nmax iterations of the sheme.(A) The exat solution of the Problem 3.5.1 isu(x) = eos 4�x + sin 4�x� e (3.5.1)and f is de�ned by f = �u00 + u.The numerial results, performed with J = 9 e nmax = 50, are presentedin the following tables



72 Adaptive shemes for linear equations Chapter 3Error in norm L2N kuJ � unmaxN kL210 32.9288520 1.3346130 0.5157040 0.3111751 0.2213161 0.1124271 0.0797781 0.1027692 0.09832102 0.06135Table 3.1. L2-approximation error.Error in norm H1N kuJ � unmaxN kH110 39.8804620 11.9511130 8.3927840 5.9479351 4.8339161 4.0523571 3.3252681 2.8804892 2.56872102 2.30032Table 3.2. H1-approximation error.Plot of the exat solution (3.5.1)
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Figure 3.1. Exat solution.In the following we show some plots dealing with the behavior of theapproximation error.(*) Behavior of kuJ � unmaxN kL2 as a funtion of N
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Figure 3.2. Logarithmi plot of the L2-approximation error.(**) Behavior of kuJ � unmaxN kH1 as a funtion of N
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Figure 3.3. Logarithmi plot of the H1-approximation error.(***) Behavior of kuJ � unNkL2 as a funtion of the number n of theiterations, for di�erent values of N
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Figure 3.4. Plot of the error kuJ � unNkL2 as a funtion of n, with N =40; N = 61.Having in mind error estimate (3.4.4)kuJ � unNkL2 . �nkuJ � u0NkL2 + 11� �N�( 1�+ 12 );from Figure 3.5.1 it is lear that going beyond the eÆient numberof iterations, whih an be obtained by "balaning" the two termson the right-hand side of the above inequality, does not bring anyfurther redution of the approximation error.



Setion 3.5. Numerial results 75(B) The exat solution of the Problem 3.5.1 isu(x) = (3x if 0 � x � 1=32x+ 3=2 if 1=3 � x � 1: (3.5.2)and f is de�ned by f = �u00+u. The numerial results, performed withJ = 9 e nmax = 50, are shown in the following tables.Error in norm L2N kuJ � unmaxN kL210 0.4466620 0.0313830 0.0017340 0.0000151 0.0000261 0.0000871 0.0001781 0.0002992 0.00042102 0.00054Table 3.3. L2-approximation error.Error in norm H1N kuJ � unmaxN kH110 0.9685520 0.2632430 0.0161940 0.0000151 0.0000461 0.0001971 0.0004481 0.0008092 0.00117102 0.00152Table 3.4. H1-approximation error.



76 Adaptive shemes for linear equations Chapter 3Plot of the exat solution (3.5.2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Figure 3.5. Exat solution.In the following we show some plots dealing with the behavior of theapproximation error.(*) Behavior of kuJ � unmaxN kL2 as a funtion of N
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Figure 3.6. Logarithmi plot of the L2-approximation error.



Setion 3.5. Numerial results 77(**) Behavior of ku� unmaxN kH1 as a funtion of N
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Figure 3.7. Logarithmi plot of the H1-approximation error.Remark 3.5.1: Due to the partiular form of the exat solution,the approximation errors kuJ � unmaxN kL2 and kuJ � unmaxN kH1 de-rease in a steep way, rapidly reahing the mahine preision.(***) Behavior of kuJ �unNkL2 as a funtion of n, for di�erent values ofN
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Figure 3.8. Plot of the error kuJ � unNkL2, as a funtion of n, with N =40; N = 61.



78 Adaptive shemes for linear equations Chapter 33.6 Nonlinear Rihardson II: the reliable shemeIn this setion we disuss omputable Nonlinear Rihardson-type shemes inorder to �nd an approximate solution to the problem (3.4.1) in �N .We make the following assumptions: the basis f � �g� and the operator A aresuh that, setting i(�; �0) = ( 1 supp � \ supp �0 6= ;;0 otherwise; (3.6.1)it holds for some R � 2, for � 2 �j and �0 2 �j0j < A �0 ;  � > j � K�;�0 = K2�( 12+R)jj�j0ji(�; �0): (3.6.2)We remark that under suitable spae-frequeny loalization properties ofthe wavelet basis f � �g�, ondition (3.6.2) holds for a wide lass of di�erentialand pseudo-di�erential operators [28℄.Property (3.6.2) implies the boundedness of the operator A as an operatorfrom `�w to `�w on a whole range of indexes � . In partiular we let �0 > 0 besuh that the matrix K = (K�;�0)�;�0 , satis�esK 2 L(`�w; `�w); 8� � �0:We observe that ertainly �0 = �0(R) an atually be stritly smaller than 1,as R inreases. The relation between the value of R and the atual value of �0is the topi of the following Lemma whih is a simple onsequene of Theorem2.5.4.Lemma 3.6.1: Let � > d=2. If s < ��d=2, a matrix D, whose entries satisfythe estimate jD�;�0j � K2��jj�j0ji(�; �0); (3.6.3)de�nes a bounded operator in `2 \ `pw, for all p suh that 1=p = 1=2 + s=d.Let us now onsider the following result [28℄.Lemma 3.6.2: Let A satisfy property (3.6.2), and let �0 < 2 be de�ned asabove. Then there exist ~� , �0 � ~� < 2 and a onstant �0, suh that 8� with1 � � � �0 it holds: kI � �AkL(`2;`2) � � < 1; (3.6.4)and 8�; ~� < � � 2, kI � �AkL(`�w;`�w) �  < 1: (3.6.5)



Setion 3.6. Nonlinear Rihardson II: the reliable sheme 79In order to �nd an approximate solution to problem (3.3.2) in �N , where Nis �xed a priori, we propose a omputable nonlinear Rihardson type-sheme,whih ouples Rihardson iterative sheme and nonlinear approximation. Weobserve that Lemma 3.6.2 guarantees the onvergene of the plain Rihardsonsheme for the solution of the in�nite linear system (3.4.1). Nonlinearity isplugged in the sheme, by foring, at eah iteration, the approximate solutionto belong to the nonlinear spae �Nn , for some Nn � N . For n1 < n2, weask that Nn1 < Nn2 (and so �Nn1 � �Nn2 ) and that N�n = N for some �n � 1.Roughly speaking at eah iteration we inate the nonlinear spae �Nn , whihthe approximate solution u(n+1) belongs to, till we reah the target nonlinearspae �N . Sine the plain Rihardson sheme involves the multipliation bythe bi-in�nite matrix A, in order to make suh an algorithm pratially fea-sible, we will also need to approximate suh multipliation. At eah iterationthis will be done with a preision �n, with �n+1 � �n. Suitable hoies for theparameters Nn and �n will be disussed in the following. Clearly, the hoieof the Nn's and of the �n's will be not made independently, if optimal perfor-mane is aimed at.Let us for the moment assume that we have seleted two sequenes Nn and �nN0 < N1 < � � �Nn1 < Nn2 < � � � < N�n = N (3.6.6)�0 > �1 > � � � �n1 > �n2 > � � � > ��n (3.6.7)The algorithm is performed in several steps.Computable nonlinear RihardsonStep 1. Initialization: set u(0) = 0.Step 2. Until n � �n, repeatStep 2.1 Prevision: selet a �nite dimensional set V (n) � � suh that, de-noted by Sn the linear subspae of `2 of the form Sn = fv 2`2 : v� = 0; � 62 V (n)g, we haveinfv2Sn ku(n) + �r(n) � vk`2 � C�n;where r(n) = g�Au(n) denotes the residual and where the onstantC depends only on initial data.Step 2.2 Compute an approximation~r(n) 2 fv = (v�)�2� 2 `2 : � 62 V (n) ) v� = 0gof the residual r(n), in suh a way that kr(n) � ~r(n)k`2 � C�n.



80 Adaptive shemes for linear equations Chapter 3Step 2.3 Projetion: set u(n+1) = PNn(u(n) + �~r(n)):Step 2.4 Update: n + 1! nEven if A is a bi-in�nite matrix, the sheme is reliable as it arries outomputations, at eah iteration, over a (�nite) prevision set V (n). Moreoverwith a suitable hoie (see Remark 3.6.3) of the number Nn of the oeÆientsto be retained at eah iteration, it is possible to redue the omputationalost of the algorithm, without loosing auray in the approximate solution.Indeed when the number of iterations is small we are far from the exat solutionand so we don't loose too muh using a small number of degrees of freedom,instead when the number of iterations inreases, the error of the iterativesheme beomes small and in order not to waste this gain, we need to use alarger number of degrees of freedom.3.6.1 PrevisionA ruial ingredient in the above algorithm is the a priori onstrution of the�nite dimensional prevision set V (n). As at eah iteration of the sheme werestrit the ation of the nonlinear projetor PNn to the �nite set V (n), weneed to hoose this set in suh a way that the oeÆients whose indexes wedisharge a priori (i.e. not belonging to V (n)) are suÆiently small, in ordernot to make the algorithm loose auray in the estimation of the approximatesolution.To aomplish this goal, we start by de�ning a sort of measure of theinterations of two indexes � = (j; k) and �0 = (j 0; k0): for eah � we de�ne aneighborhood in � by: I(�; �) = f�0 : v(�; �0) > �g;where � is a given tolerane andv(�; �0) = 2�R2 jj�j0ji(�; �0);with R depending on the regularity of wavelet basis andi(�; �0) = ( 1 supp � \ supp �0 6= ;;0 otherwise: (3.6.8)Let now w 2 �N w =X�2��w� �; #(��) = N:



Setion 3.6. Nonlinear Rihardson II: the reliable sheme 81We want to ompute r�:r� = g� � (Aw)� = g� �X�02�� a�;�0w�0; (3.6.9)where a�;�0 =< A � �; � �0 >, within a presribed auray. In order to do so,we split the sum at the right hand side as the sum of two ontributions: one,d�, oming from frequenies �0 belonging to the neighborhood I(�; �) of �; theother, e�, oming from frequenies not belonging to it:(Aw)� = d� + e�; (3.6.10)where d� = X�02��\I(�;�) < A �0 ;  � > w�0 ; (3.6.11)e� = X�02��nI(�;�) < A �0 ;  � > w�0: (3.6.12)The ontribution e� to (Aw)�, of frequenies �0 not belonging to the neigh-borhood I(�; �) of �, an be ontrolled by tuning the parameter �, that is witha suitable hoie of the size of the neighborhood I(�; �). To this aim we let�1 be suh that the matrix �K = ( �K�;�0)�;�0, with, for � 2 �j and �0 2 �j0�K�;�0 = 2R2 jj�j0jK�;�0 satis�es�K 2 L(`�w; `�w); 8� � �1; (3.6.13)where, by using Lemma 3.6.1 with D = �K and � = 1=2 + R=2, the value of�1 = �1(R) an again be stritly smaller than 1, as R is suÆiently large.We have the following Lemma.Lemma 3.6.3: Let A satisfy (3.6.2). There exist onstant C0 and C1 depend-ing on the operator A and the wavelet basis f �g�, suh that we have:kek`2 � C0�kwk`2; (3.6.14)and for all p, �1 � p < 2 kek`pw � C1�kwk`pw : (3.6.15)Proof: Using property (3.6.2) in the de�nition of e�, together with thede�nition of the set I(�; �), we obtain the following estimate for all �:je�j < �KX�0 2�R+12 jj�j0ji(�; �0)jw�j = �( �Kw)�: (3.6.16)



82 Adaptive shemes for linear equations Chapter 3We then easily write kek`2 � �k �KkL(`2;`2)kwk`2;and for all p, �1 � p < 2 kek`pw � �k �KkL(`pw;`pw)kwk`pw :By using Lemma 3.6.1 it is not diÆult to prove that there exist onstants C0and C1 suh that k �KkL(`2;`2) � C0; and k �KkL(`pw;`pw) � C1; and this allows toonlude. 2Now we ome to the topi of approximating the right hand side g. As amatter of fat we reall the following result [47℄:Lemma 3.6.4: Let g 2 `1 and let T �� g be de�ned by:(T �� g)� = (g� jg�j � � 22��0 jg�j < � 22�� :The following estimate holds for every 0 < � � 2:kg � T �� gk`2 � �kg � T �� gk�=2`� � �kgk�=2`� :De�ne then sets B and C:B = f� : I(�; �) \ �� 6= ;g;C = f� : jg�j � � 22�� g:We then de�ne ~r = ~r(w) in fv = (v�) 2 `1; v� = 0 8� 62 B [ Cg as~r = T �� g � d; that is ~r� = 8>>><>>>:g� � d� � 2 B \ Cg� � 2 C n B�d� � 2 B n C0 otherwise: (3.6.17)Now it is easy to obtain the following two Corollaries:Corollary 3.6.1: Let r = g �Aw, then we havekr � ~rk`2 � C0�(kwk`2 + kgk`2):Corollary 3.6.2: If ~r is de�ned as above, then it holds that:k~rk`�w � C1(kwk`�w + kgk`�w):



Setion 3.6. Nonlinear Rihardson II: the reliable sheme 833.6.2 Error EstimateLet us then suppose that we are give non inreasing sequene (�n)n of positivereal numbers and a non dereasing sequene (Nn)n of integers, respetivelyonverging to 0 and to +1 as n �! +1.Given u(n), we onsider the prevision set V (n) := B(n)[C(n), where �(n) � �is the set ontaining the oeÆients of u(n):B(n) = f� : I(�; �n) \ �(n) 6= ;g;C(n) = f� : jg�j � � 22��n g:We then de�ne ~r(n) := ~r(u(n)) 2 fv 2 `1; v� = 0 8� 62 V (n)g aording to(3.6.17): ~r(n)� = T �n� g � X�02I(�;�n)\�(n) < A �0 ;  � > u(n)�0and we onsider the nonlinear Rihardson sheme:u(n+1) = PNn(u(n) + �~r(n)): (3.6.18)The residual ~r(n) = (~r(n)� )�2V (n) is the trunated residual omputed on theprevision set V (n).The main result of this paper is the following Theorem, whih onsiders theinuene of the prevision step on the auray of the algorithm and providesan error estimate [19℄:Theorem 3.6.1: Let A satisfy assumption (3.6.2). Then there exist a ~� < 2,a �0 > 0 and an �� > 0 suh that if �0 < ��, for all �, 0 < � < �0, it holds (theonstants in the inequalities depending on initial data):(i) stability: if g; u(0) 2 `2 we haveku(n)k`2 � C; 8n 2 N ; (3.6.19)(ii) approximation error estimate: if g 2 `�w, with maxf~� ; �1g < � � 2, thenit holds for some � < 1:ku(n+1) � uk`2 . �n+1ku(0) � uk`2+ C(ku(0)k`2; kgk`2) � nXi=0 �n�i�i + nXi=0 �n�iN�( 1�� 12 )i ! :(3.6.20)



84 Adaptive shemes for linear equations Chapter 3Proof: Let ~� and �0 be given by Lemma 3.6.2. Let us start by proving thestability estimate (3.6.19). First of all we observe that PNn is trivially both `2and `�w -ontrative. Aording to (3.6.18), by Lemma 3.6.2 we have:ku(n+1)k`2 � k(I � �A)u(n)k`2 + �kgk`2 + �kek`2� (�+ �C0�n)ku(n)k`2 + �kgk`2 (3.6.21)where we have used inequality (3.6.14). Then iterating relation (3.6.21), weobtain:ku(n+1)k`2 �  nYi=0(�+ C��n)! ku(0)k`2 + � 1 + nXi=0 nỲ=i(�+ C��`)! kgk`2 :(3.6.22)Similarly we have:ku(n+1)k`�w �  nYi=0( + C��n)! ku(0)k`�w + � 1 + nXi=0 nỲ=i( + C��`)! kgk`�w :(3.6.23)Sine ondition (3.6.7) implies �n < �0, we then haveku(n+1)k`2 � (�+ C��0)n+1ku(0)k`2 + � nXi=0 (�+ C��0)ikgk`2 : (3.6.24)If �0 is hosen in suh a way that (� + C��0) < 1, then the sum on the righthand side onverges, and this yields (3.6.19). Analogously, if �0 is hosen insuh a way that ( + C��0) < 1, then one an prove thatku(n+1)k`�w � C� : (3.6.25)Let us now onsider the error. Letting"(n) = PNn(u(n) + �~r(n))� (u(n) + �~r(n));a simple alulation yields:u(n+1) � u = (I � �A)(u(n) � u) + �(~r(n) � r(n)) + "(n);where r(n) = g�Au(n) is the residual alulated on �, from whih, taking the`2 norm and using (3.6.4),ku(n+1) � uk`2 � �ku(n) � uk`2 + �k~r(n) � r(n)k`2 + k"(n)k`2: (3.6.26)



Setion 3.6. Nonlinear Rihardson II: the reliable sheme 85Iterating (3.6.26), we then obtain:ku(n+1) � uk`2 � �n+1ku(0) � uk`2 + � nXi=0 �n�ik~r(i) � r(i)k`2 + nXi=0 �n�ik"(i)k`2 :(3.6.27)The �rst term on the right hand side onverges to zero, sine, by Lemma 3.6.2we have that � < 1. Let us then bound the remaining two terms.By applying Corollary 3.6.1 with w = u(i), together with the stability result(3.6.19) we obtain: k~r(i) � r(i)k`2 � C(ku(0)k`2; kgk`2) �iAs far as k"(n)k`2 is onerned, by applying Theorem 3.2.1, we have that:k"(n)k`2 . N�( 1�+ 12 )n ku(n) + �~r(n)k`�w :Let us then bound the `�w norm on the right hand side. Thanks to Corollary3.6.2, we have: ku(n) + �~r(n)k`�w � ku(n)k`�w + �k~r(n)k`�w. C(u(0); g): (3.6.28)whih yields k"(n)k`2 . N�( 1�� 12 )n C(g; u(0)):Combining suh bound with (3.6.27) and using Lemma 3.6.4 imply thethesis:ku(n+1)�uk`2 . �n+1ku(0)�uk`2+C(ku(0)k`2; kgk`2) � nXi=0 �n�i�i + nXi=0 �n�iN�( 1�� 12 )i !2Remark 3.6.1: We would like to point out that in order for the sumnXi=0 nỲ=i(�+ C��`)at the right hand side of (3.6.22) to onverge it is suÆient that(�+ C��`) �  < 1; 8` > �̀;for some �̀. The method is then stable also if �0 is not smaller than ��. Clearly,in suh ase the stability onstant will depend on the sequene (�n). Suh



86 Adaptive shemes for linear equations Chapter 3dependene is however not a problem as far as the asymptoti is onerned,sine suh onstant gets smaller if the sequene (�n) gets smaller element-wise.In partiular one an hoose a referene sequene (��n) and for all sequene(�n) suh that �n < ��n the stability onstant is uniformly bounded by a onstantdepending on (��n).Using norm equivalenes (4.2.5), the above result an be translated in termsof the orresponding ontinuous problem (3.3.1), as stated by the followingorollary:Corollary 3.6.3: Let u be the solution of (3.3.2) and g belong to Br+s�;� (
),with � given by 1=� = r=d + 1=2 and with r suh that 0 < r + s �min(S; d=(maxf~� ; �1g) � d=2). If u(n+1) = P� u(n)� � � is the non linear ap-proximation of u at step n + 1 of the non-linear Rihardson sheme, with� < �0, then it holds, for some � < 1:ku� u(n)kHs(
) . nXi=0 �n�iN� rdi + �2 nXi=0 �n�i�i + �n+1ku(0) � ukHs(
);for all n 2 N, where the impliit onstants depend only on initial data.Remark 3.6.2: Though for simpliity we �xed throughout this paper a varia-tional framework orresponding to an ellipti Neumann BVP on the boundeddomain 
, it is not diÆult to hek that the whole proof of the result obtainedrelies on the representation (3.4.1) of the Problem and on the norm equiva-lenes (3.2.1) and (3.2.3). Therefore suh results arry over to muh moregeneral situations (Dirihlet BVP, Integral equations) where the spae Br+s�;� issubstituted by the spae for whih a representation of the form (3.2.3) holds.3.6.3 Choosing the toleranesWe now need to hoose the sequenes (Ni) of the number of d.o.f. to beretained at eah iteration and (�i) of the toleranes to be used in the previsionstep. In order to do so we imposing a sort of \balaning" between the terms ofthe sums in equation (3.6.1), in suh a way that all ontributions to the errorhave roughly the same order. More preisely we ask that�n+1 � nXi=0 �n�i�i � nXi=0 �n�iN�( 1�� 12 )i :Sine nXi=0 �n�i�i = �n+1 nXi=0 ��i�1�i;



Setion 3.7. Nononforming domain deomposition 87the toleranes �i should then be hosen in suh a way that+1Xi=0 ��i�1�i < +1:It is not diÆult to see that this holds for instane for the hoie�i = �i+1i log i :Analogously, we will hoose NiNi = � i log i�i+1 � 2�2�� :If we are interested in approximating u with N degrees of freedom, we willthen have to stop for N = Nn = �n logn�n+1 � 2�2�� ;that is at iteration n(N), n(N) being the smallest integer suh thatlogn + log logn+ (n+ 1)j log�j � ( 2�2� � ) logN:It is not diÆult to realize thatn � (1=� � 1=2) logN2 + j log�j � 1:3.7 Nononforming domain deomposition3.7.1 Funtional SettingLet 
 � IRn be a bounded polygonal domain with Lipshitz boundary �
.Let 
 be deomposed into a �nite number of non{overlapping polygonal sub-domains 
k, k = 1; : : : ; K,
 = K[k=1
k; 
k \ 
m = ;; k 6= m; (3.7.1)where � =  K[k=1 �
k! n �
 (3.7.2)



88 Adaptive shemes for linear equations Chapter 3is alled the skeleton of the deomposition. We will also employ the notation�k := �
k n �
 (3.7.3)so that � = K[k=1�k: (3.7.4)Let H1=2(�
k) and H1=200 (�k) be de�ned as the trae spae of, respetively,H1(
k) and H1�
(
k) := fvk 2 H1(
k); vk = 0 on �
 \ �
kg, with normsk�kH1=2(�
k) := infvk2H1(
k): vk j�
k=� kvkkH1(
k); (3.7.5)k�kH1=200 (�k) := infvk2H1�
(
k): vkj�k=� kvkkH1(
k):Remark 3.7.1: Equivalent norms for H1=2(�
k) and for H1=200 (�k) an be de-�ned through the norms of H1=2(℄0; 1[n�1) and H1=200 (℄0; 1[n�1) by using an atlasand partitions of unity where the onstants in the equivalene depend on thediameter of 
k.For eah k, let H1=2�
 (�k) be either H1=2(�k) or H1=200 (�k), depending onwhether �k is a losed or an open set, with normj�j1=2;�k := ( k�kH1=200 (�k); if �k \ �
 6= ;;k�kH1=2(�
k); otherwise, (i.e., if �k = �
k): (3.7.6)We will denote by (�; �)1=2;�k the orresponding inner produt. Moreover, letH�1=2�
 (�k) be the orresponding dual, whose norm and inner produt will bedenoted by j�j�1=2;�k and (�; �)�1=2;�k. Duality between H1=2�
 (�k) and H�1=2�
 (�k)will be written as h�; �ik.We an now introdue the funtional setting for the domain deompositionmethod we are going to onsider. Let V be the produt spaeV := f(v1; : : : ; vK); vk 2 H1(
k); vk = 0 on �
 \ �
k; k = 1; � � � ; Kg(3.7.7)whih is isomorphi tofv 2 L2(
) : vk = vj
k 2 H1(
k); vk = 0 on �
 \ �
k; k = 1; � � � ; Kg;endowed with the normkvk2V := KXk=1 kvkk2H1(
k); v 2 V; (3.7.8)



Setion 3.7. Nononforming domain deomposition 89indued by the inner produt(u; v)V := KXk=1(uk; vk)H1(
k): (3.7.9)Moreover, let � and � be de�ned by� := KYk=1H�1=2�
 (�k) (3.7.10)and � = H10 (
)j�, that is� := f� 2 L2(�) : there exists v 2 H10 (
) suh that � = vj�g: (3.7.11)� and � are endowed with the normsk�k� := KXk=1 j�kj2�1=2;�k ; k�k� := infv2H10 (
): vj�=� kvkH1(
); (3.7.12)respetively. We remark that H10 (
) an be identi�ed with a subset of V ,H10 (
) �= fv = (vk)k=1;��� ;K 2 V : there exists � 2 �; vk = � on �kg � V:In the following, when writing v = (vk) 2 H10 (
) for an element v 2 V ,we will refer to suh an isomorphism. Moreover, for the sake of notationalsimpliity we will write (vk) for (vk)k=1;��� ;K, always assuming that, unlessotherwise stated, the index k ranges from 1 to K.An observation that will be important in the sequel is the following:Proposition 3.7.2: It holds�0 = KYk=1H1=2�
 (�k); k�k�0 �  KXk=1 j�kj21=2;�k!1=2 : (3.7.13)Moreover, one has that(i) the spae � an be identi�ed with a proper subset of �0, by identifying� 2 � with (�k) 2 �0, �k = �j�k ;(ii) for � 2 � the equivalenesk�k� �  KXk=1 j�kj1=2;�k!1=2 � k�k�0; (�k = �j�k); (3.7.14)hold.



90 Adaptive shemes for linear equations Chapter 3Proof: The proof of (3.7.13) follows by standard arguments sine the dual ofa Cartesian produt of spaes is the produt of the duals.As far as (ii) is onerned, let now � 2 � and let v 2 H10 (
) be any funtionsuh that v = � on �. Then we haveKXk=1 j�j21=2;�k � KXk=1 kvk2H1(
k) = kvk2H10 (
):Sine V is arbitrary, this yieldsKXk=1 j�j21=2;�k . infv2H10 (
): vj�=� kvk2H1(
) = k�k2�:Let now u in H10 (
) be de�ned suh that ��u = 0 in 
k and u = � on �k forall k. Then one hask�k2� � kuk2H10 (
) = KXk=1 kuk2H1(
k) . KXk=1 j�j21=2;�k :
3.7.2 The Three-Fields formulationWe onsider the seond order ellipti boundary value problem� div a(x) grad u(x) = f in 
;u = 0 on �
; (3.7.15)with a suÆiently smooth and uniformly positive de�nite matrix a(x) andf 2 L2(
). To solve this by a domain deomposition approah, for eahk 2 f1; : : : ; Kg let ak : H1(
k) � H1(
k) ! IR be the bilinear form induedby the di�erential operator on the subdomain 
k,ak(u; v) = Z
k a(x) gradu � grad v dx:A omposed bilinear form a : V � V ! IR an be de�ned bya(�; �) := KXk=1 ak(�; �): (3.7.16)



Setion 3.7. Nononforming domain deomposition 91For all v 2 H10 (
), a(�; �) satis�esa(v; v) = KXk=1 Z
k a(x)j grad vj2 dx � kvk2H1(
): (3.7.17)In alternative to the standard weak formulation of the boundary value problem(3.7.15), �nd u� 2 H10(
) suh thata(u�; v) = (f; v)L2(
) for all v 2 H10 (
); (3.7.18)we an then onsider the Three Fields Formulation: �nd (u; �; ') 2 V ����suh that8>>>>>>>>><>>>>>>>>>:
a(u; v)� KXk=1h�k; vkik = (f; v)L2(
) for all v 2 V;KXk=1h'� uk; �kik = 0 for all � 2 �;KXk=1h�k; �ik = 0 for all � 2 �: (3.7.19)

This formulation was introdued in [23℄, where it was shown that problem(3.7.19) has for every f 2 L2(
) a unique solution (u; �; '), satisfying8>>>><>>>>: uk = u� in 
k; k = 1; : : : ; K;�k = a �u��nk on �
k; k = 1; : : : ; K;' = u� on �; (3.7.20)where �u�=�nk is the outward normal derivative of the restrition of u� to 
k.We an write the system (3.7.19) more onveniently in operator form asfollows. De�ne A : V ! V 0 byhAv; vi := a(v; v):For eah k = 1; : : : ; K, let Bk : H1�
(
k)! H1=2�
 (�k) denote the trae operator.Let then B : V ! �0 be de�ned by B := diag(B1; : : : ; BK). Moreover, letCk : H�1=2�
 (�k)! �0 be de�ned ashCk�k; �i := h�k; �ik;



92 Adaptive shemes for linear equations Chapter 3and let C : � ! �0 be assembled as C := diag(C1; : : : ; CK). With thesenotations, the system (3.7.19) an be written as follows: �nd (u; �; ') 2 V ��� � as solution of0� A �BT 0�B 0 CT0 C 0 1A0� u�' 1A = 0� f00 1A : (3.7.21)Remark 3.7.3: [23℄ One of the interests for the Three Fields Formulation liesin the observation that, for given ' 2 �, the omputation of u and � reduesto solving K independent Dirihlet problems on the subdomains 
k. Eah ofthese is of the form� Ak �(Bk)T�Bk 0 �� uk�k � = � fk�(Ck)T ' � : (3.7.22)' an then be omputed as the solution ofCA�1CT' = CA�1� f0 � (3.7.23)where A := � A �BT�B 0 � ; C := (0 C); (3.7.24)Here the operator S := CA�1CT is just the Poinar�e-Steklov operator on �.Hene, by applying a Shur omplement tehnique, the solution of the originalproblem (3.7.15) or equivalently of the problem (3.7.20), is redued to thesolution of the equation on the "trae" unknown:S' = g; (3.7.25)with g = CA�1� f0 �.It has been shown in [23℄ the following resultLemma 3.7.4: S is an isomorphism from � to �0 that satis�es in addition�0hS�; �i� � k � k2�.



Setion 3.7. Nononforming domain deomposition 933.7.3 An adaptive wavelet methodOur aim is to solve the ontinuous linear problemS' = g (3.7.26)by means of an adaptive wavelet method. Aording to the "new approah" we�rst have to transform the initial ontinuous problem (3.7.26) into an equiva-lent 1-dimensional problem.To do this let us assume that we have a ouple of biorthogonal waveletbases for L2(�)  := f j;m; (j;m) 2 r := [j�j0rjg; (3.7.27)~ := f ~ j;m; (j;m) 2 r := [j�j0rjg;with the following properties:(P1) any funtion � 2 L2(�) an be expanded in terms of either  or ~ ,� =Xj�j0 Xm2rjh�; ~ j;mi j;m =Xj�j0 Xm2rjh�;  j;mik ~ j;m; (3.7.28)(h�; �i denoting here the L2(�) salar produt);(P2) one has  j;m 2 �, and the following norm equivalene holdsk�k2� �Xj�j0 2j Xm2rj jh�; ~ j;mij2; � 2 �; (3.7.29)(P3)  and ~ have loal support, i.e.,diam(supp j;m) � diam(supp ~ j;m) � 2�j: (3.7.30)There are by now a number of onstrutions of suh biorthogonal wavelets[34℄, [25℄, [42℄, [43℄ that an be applied to the present setting. In partiularwe refer to [15℄ for a a partiularly simple onstrution whih, in the two-dimensional ase, is suÆient for the present purpose.Now we deompose the funtions ' and S', by hoosing two suitableresaled versions f ̂; ~̂ g and f � ; �~ g, of the given pair of biorthogonal waveletbases f ; ~ g, suh that' 2 � ' =Xj�j0 Xm2rj 'j;m � j;m; � j;m = 2�j j;m;



94 Adaptive shemes for linear equations Chapter 3S' 2 �0 S' =Xj�j0 Xm2rj sj;m � j;m;  ̂j;m = 2j j;m:Now we build an1-dimensional operator S whih ats on wavelet oeÆientsas follows: S : ' = f'j;mgj;m ! s = fsj;mgj;m: (3.7.31)Thanks to (P.2), the above operator S is an isomorphism from `2 onto `2:S : `2 ! `2:Thus to solve the ontinuous problem (3.7.26) is equivalent to solveS' = g;where ' 2 `2 is the in�nite vetor of the wavelet oeÆients of the unknown so-lution, while the in�nite vetor g = fgj;mgj;m, ontains the wavelet oeÆientsof the funtion g 2 �0.Now let us onsider the following S-nonlinear Rihardson sheme forthe solution of the 1-dimensional problem S' = g:given '0for i = 0; : : :1. Compute (S'i)"i approximation to S'i, with preision "i.2. Compute 'i+1 = PNi+1('i + �(g � (S'i)"i)endwhere the nonlinear projetor PNi+1 retains the Ni+1 largest, in absolute value,wavelet oeÆients.It is important to remark that omputing (S'i)"i, approximation to S'i,is equivalent to approximately solving K deoupled Dirihlet problems, whereK is the number of the subdomains. This will in general be done by applyingan adaptive solver (not neessarily of wavelet type).We analyze suh a nonlinear Rihardson-type sheme, as an element of amore general lass of algorithms, whih we present in the next setion withinan abstrat (not neessarily wavelet) framework.



Setion 3.8. An abstrat framework for Nonlinear Rihardson-type algorithm 953.8 An abstrat framework for Nonlinear Rihardson-type algorithmAssumeX and Y are quasi-normed spaes, with Y ontinuously embedded intoX, and that fSNgj�0 and fTMgj�0 are two unrelated sequenes of nonlinearapproximation spaesS0 � : : : � SN � SN+1 � : : : � Y � X;T0 � : : : � TM � TM+1 � : : : � Y � X;suh that for some s > 0 (s is alled rate of onvergene) one has Jakson-typeestimates, for all f 2 YdistX(f; SN) = infg2SN kf � gkX . N�skfkY ; (3.8.1)distX(f; TM) = infg2TM kf � gkX .M�skfkY (3.8.2)and Bernstein-type estimateskfkY . N skfkX if f 2 SN ; (3.8.3)kfkY .M skfkX if f 2 TM : (3.8.4)Moreover assume that SN + SN 0 � SN+N 0; N > 0; (3.8.5)TM + TM 0 � TM+M 0; M > 0; (3.8.6)and there exist two nonlinear projetorsPN : X ! SN ; (3.8.7)and QM : X ! TM ; (3.8.8)whih are quasi-optimalkf � PNfkX . distX(f; SN ) . N�skfkY ; f 2 X; (3.8.9)kf � QM fkX . distX(f; TM) .M�skfkY ; f 2 X; (3.8.10)and X; Y -ontrative:kPN (f)kX � kfkX ; kPN (f)kY � kfkY ; (3.8.11)kQM (f)kX � kfkX ; kQM (f)kY � kfkY : (3.8.12)



96 Adaptive shemes for linear equations Chapter 3Finally we suppose that PNi are suh that for all f 2 X there exist SfNi � SNilinear subspae of SNi and�Ni : f 2 X ! �Ni(f) 2 ~SfNi ; (3.8.13)bounded linear projetor, suh that�Ni(f) = PNi(f):Let now onsider the ontinuous linear operator L : X ! X suh that whenit is restrited to more regular spae Y , whih is ontinuously embedded intoX, it preserves suh regularity: LjY : Y ! Y:Let us assume that(S.1) there exists �0 suh that for all � with 0 < � < �0 it holdskI � �LkX!X � � < 1; (3.8.14)kI � �LkY!Y �  < 1: (3.8.15)(S.2) there exists an approximation strategy for L' suh that for all " > 0,there exists a (L')" with(L')" 2 TM" ; M" depending on "; (3.8.16)satisfying the following inequalitykL'� (L')"kX � "k'kX; (3.8.17)for all ' 2 X.The approximation strategy for L' an be regarded as a blak-box approx-imation strategy satisfying inequality (3.8.17). For instane, in the ontextof three-�eld formulation, it has been studied [14℄ a �nite element based ap-proximation strategy for S' 2 �0, where S is the ontinuous Steklov-Poinar�eoperator, suh that for every " > 0 it exists a (S')" verifyingkS'� (S')"k�0 � "k�k�:By using norm equivalenes, the above inequality an be equivalently restatedin wavelet oordinates kS'� (S')"k`2 � "k'k`2 :



Setion 3.8. An abstrat framework for Nonlinear Rihardson-type algorithm 97Generally no a-priori information is available about the relation between thetolerane " and the number M" of degrees of freedom used to build the ap-proximation. anyway nonlinear approximation provides a natural benhmarkfor this kind of relation and in view of this we give the following de�nition ofoptimal approximation strategy.De�nition Let s be the rate of onvergene assoiated to the sequene fTMgMof nonlinear spaes of approximation. The approximation strategy in (S.2) issaid to be optimal if f 2 X �! "(M")s � K;for all " > 0.We are interested in the followingProblem 3.8.1: Given f 2 Y , solve the linear equationL' = f: (3.8.18)In partiular, given a number ~N > 0 of degrees of freedom, we are interestedin �nding an approximation ' ~N 2 S ~N to the exat solution '� of (3.8.18).We onsider the following L-nonlinear Rihardson sheme:given '0 2 SN0for i = 0; : : :1. Compute (L'i)"i 2 TM"i2. Compute 'i+1 = PNi+1('i + �(f � (L'i)"i)) 2 SNi+1endRemark 3.8.1: It is important to remark that the above sheme is able toouple two eventually di�erent approximation strategies (e.g. �nite element-wavelet or �nite element-�nite element) into an iterative proedure, one strat-egy oming from the hoie of the nonlinear spaes fSNg and the other fromthe hoie of the nonlinear spaes fTMg.Let us now prove the following resultLemma 3.8.1: If the sequene f"ig is hosen suh that�+ �"i < 1; (3.8.19)then the L-nonlinear Rihardson is X-stable.



98 Adaptive shemes for linear equations Chapter 3Proof: Using the X-ontrativity of the nonlinear projetor PN andassumption (S.2) yieldsk'i+1kX = kPNi+1('i + �(f � (L'i)"i))kX� k'i + �(f � (L'i)"i)kX� k(I � �L)'ikX + �k(L'i)"i � L'ikX + �kfkX� �k'ikX + �"ik'ikX + �kfkX� (�+ �"i)k'ikX + �kfkX :By iterating the above inequality we obtaink'i+1kX � k'0kX�ik=0(�+ �"k)k + �kfkX iXk=0(�+ �"k)k; (3.8.20)whih yields the inequality k'i+1kX � CX ; (3.8.21)if we hoose f"ig suh that �+ �"i � � < 1:Let us now disuss the Y -stability of the algorithm.Lemma 3.8.2: Under the assumption of Lemma 3.8.1, if the sequenes fNkgand f"kg are hosen in suh a way that1Xk=0 �i�kN sk+1"k <1; (3.8.22)then the L-nonlinear Rihardson is Y -stable.Proof: Using the de�nition of the linear projetor �Ni+1 yieldsk'i+1kY = kPNi+1('i + �(f � (L'i)"i))kY= k�Ni+1('i + �(f � (L'i)"i))kY� k�Ni+1('i + �(f � L'i))kY + �k�Ni+1(L'i � (L'i)"i)kY :As �i+1(L'i� (L'i)"i) 2 SNi+1 , then by using Bernstein inequality (3.8.3), wehave k'i+1kY � k(I � �S)'ikY + �kfkY +N si+1kL'i � (L'i)"ikX :



Setion 3.8. An abstrat framework for Nonlinear Rihardson-type algorithm 99Then assumptions (S.1) and (S.2) yieldk'i+1kY � �k'ikY + �kfkY +N si+1"ik'ikX� �k'ikY + �kfkY + CXN si+1"i:By iterating the above inequality we obtaink'i+1kY � �i+1k'0kY + CX iXk=0 �i�kN sk+1"k + �1� �kfkY :Hene the property k'i+1kY � CYfollows if we hoose the sequenes fNkgk and f"kg suh that1Xk=0 �i�kN sk+1"k <1:
Theorem 3.8.1: Under the assumptions of Lemmas 3.8.1 and 3.8.2, if theapproximation strategy for L' is optimal, then the following error estimateholds k'i+1 � 'kX . iXk=0 �i�kN�sk+1 + �i+1k'0 � 'kX + iXk=0 �i�k"k; (3.8.23)with � < 1 and all the onstants depending only on the initial data.Proof: By using Jakson estimate (3.8.1), we havek'i+1 � 'kX � k(PNi+1 � I)('i + �(f � (L'i)"i))kX+k(I � �L)('i � ')kX + �kL'i � (L'i)"ikX� N�si+1k'i + �(f � (L'i)"i)kY + �k'i � 'kX + �"ik'ikX :Let us now estimate the termU i := k'i + �(f � (L'i)"i)kY :We have U i � k(I � �L)'ikY + �k(L'i)"i � L'ikY + �kfkY� k'ikY + �k(L'i)"i � L'ikY + �kfkY



100 Adaptive shemes for linear equations Chapter 3If we denote by M"i the number of degrees of freedom used to build (L'i)"i,then QM"i (L'i) 2 TM"i ;with #Ti("i) = M("i), provides a quasi-optimal M"i-term approximation ofL'i in the norm of X.It follows thatU i � k'ikY + �k(L'i)"i � QM"i (L')kY + �kQM"i (L'i)� L'ikY + �kfkY :Remarking that QM"i (L')� (L'i)"i 2 T2M"i allows to use Bernstein-typeinequality (3.8.4) whih giveskQM"i (L'i)� (L'i)"ikY . (2M"i)skQM"i (L'i)� (L'i)"ikX :Hene, by using Y -ontinuity of the operator L, we haveU i . k'ikY + �(2M"i)sk(L'i)"i � QM"i (L'i)kX+�kQM"i (L'i)� L'ikY + �kfkY. k'ikY + �(2M"i)sk(L'i)"i � QM"i (L'i)kX+2�kL'ikY + �kfkY. k'ikY + �(2M"i)s�k(L'i)"i � L'ikX + kL'i � QM"i (L')kX�+2C�k'ikY + �kfkY :Now using assumption (S:2) and quasi-optimality of the nonlinear projetorPN together with Jakson-type estimate (3.8.1) givesU i . k'ikY + �(2M"i)s"ik'ikX + �(2M"i)sM�s"i kL'ikY2C�k'ikY + �kfkY ;where C is suh that kL'kY � Ck'kY , for all ' 2 Y .Thanks to Y -ontinuity of L and to X-stability (3.8.20), we obtain the follow-ing inequalityU i . ( + 2�C + �C 02s)k'ikY + �CX(2M"i)s"i + �kfkX ;where C 0 is suh that kL'kX � C 0k'kX , for all ' 2 Y .



Setion 3.8. An abstrat framework for Nonlinear Rihardson-type algorithm 101By using Lemma 3.8.2, we �nally obtaink'i + �(f � (L'i)"i)kY . ( + 2�C + �C 02s)CY+�2sCXM s"i"i + �kfkX : (3.8.24)Now we go bak to the error estimate.It followsk'i+1 � 'kX . N�si+1n( + 2�C + �C 02s)CY + �2sCXM s"i"i + �kfkXo+�k'i � 'kX + �"ik'ikX :Finally, by iterating the above inequality and by using X-stability, weobtain the following error estimatek'i+1 � 'kX . iXk=0 �i�kN�sk+1n( + 2�C + �C 02s)CY + �2sCXM s"k"k + �kfkXo+�i+1k'0 � 'kX + �CX iXk=0 �i�k"k:Hene, as we assume that the strategy for L' is optimal, i.e."M s" � K;for all " > 0, the thesis follows.De�nition We say that the L-nonlinear Rihardson sheme is optimal, ifit exhibits, after i + 1 iterations, an error redution by a fator �i+1.We now need to hoose the sequene fNig of degrees of freedom to be retainedat eah iteration of the sheme and the sequene f"ig of the toleranes re-lated to the approximation of L'i, in order to guarantee the optimality of thesheme. To do this, we impose a sort of "balaning" between the terms of thesums in equation (3.8.25), in suh a way that all ontributions to the error hasroughly the same order�i+1 � iXk=0 �i�k"k � iXk=0 �i�kN�sk+1�k;where �k := ( + 2�C + �C 02s)CY + �2sCXM("k)s"k + �kfkX :



102 Adaptive shemes for linear equations Chapter 3Let us suppose that the approximation strategy for L' is optimal, then �k isuniformly bounded, otherwise it ould be unbounded.Sine iXk=0 �i�k"k = �i+1 iXk=0 ��k�1"k;the toleranes "k should then be hosen in suh a way that+1Xk=0 ��k�1"k < +1:It is not diÆult to see that this holds for instane for the hoie"k = �k+1k log k :Analogously we will hoose Nk+1 suh thatNk+1 = ��kk log k�k+1 �1=s :Remark 3.8.2: If the approximation strategy for L' is not optimal, i.e. f�kgkis possibly unbounded, then roughly speaking the hoie of Nk+1 will have toompensate, at eah iteration k, the loss of optimality. The result is a morequik growth of fNkg, than in the optimal ase and in a loss of the optimalityin reduing the �nal error.3.8.1 An appliation: the Three-Fields formulationNow we apply the above setting to the partiular ase of three-�eld nonon-forming domain deomposition method.Assume that the strategy for omputing (S')" falls in the framework de-sribed in the previous setion. This basially redues to saying that the typeof disretization spaes used for approximating the Lagrange multiplier veri�esBernstein and Jakson inequalities of the type (3.8.2) and (3.8.4) and that theadaptive strategy guarantees a presribed error on the Lagrange multiplier.This holds for instane if free-knot splines [74℄ are used to approximate the La-grange multiplier, together with a-posteriori error indiator proposed in [14℄.Then using Theorem 3.8.1 yields the following CorollaryCorollary 3.8.1: Let S : `2 ! `2 be the 1-dimensional linear operator asso-iated to the three-�eld formulation. Assume there exists a � , with 0 < � < 2,



Setion 3.9. Open problems and perspetives 103suh that S is an isomorphism from `� onto `� . Under the assumptions of Lem-mas 3.8.1 and 3.8.2, if the approximation strategy for S' is optimal, then theS-nonlinear Rihardson sheme is `2-stable and the following error estimateholds k'i+1 � 'kX . iXk=0 �i�kN�sk+1 + �i+1k'0 � �kX + iXk=0 �i�k"k; (3.8.25)with � < 1 and all the onstants depending only on the initial data.3.9 Open problems and perspetivesNonlinear Rihardson type algorithms ould be applied in a quite wide lassof situations inluding non-onforming domain deomposition methods, buta deeper study in this diretion, inluding probing numerial experiments, isneessary. Suh nonlinear algorithms are attrative in the sense that the useris able to ontrol the number of degrees of freedom (and therefore the memorysize and omplexity) at eah iteration, but they also su�er from the followingdrawbak ompared for example to the adaptive wavelet sheme proposed in[31℄: all the parameters involved in the �ne tuning of the algorithm dependon the number � < 2, whih desribes the degree of sparsity of the solution inthe wavelet basis, in the sense that the oeÆient sequene belongs to `�w, orequivalently the order of onvergene of the nonlinear projetion algorithm isN�s=d, with s=d = 1=� � 1=2. This means that in order to onverge with thisoptimal rate, the algorithm requires an a-priori knowledge on the smoothnessof the solution whih is somehow the opposite of adaptivity. Another drawbakis that the range of the onvergene rate whih an be onsidered is limited bysome ondition ~� < � , where ~� ould be muh larger than the atual degreeof sparsity of the solution. This omes from the fat that all the proofs relyon a ontration property of an operator in the `� norm, whih is known to beontrative in `2 and bounded in the `� norm for some arbitrarily small � , andtherefore ontrative in `� by interpolation, for � suÆiently lose to 2. Sinethere is no lear estimate on ~� , it ould well be that the rates of onvergenewhih an be ahieved by the algorithm are quite deeiving ompared to theoptimal rate of nonlinear approximation, exept when the solution is not sosparse (in whih ase a uniform method would work as well).
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Chapter 4ADAPTIVE SCHEMES FORNONLINEAR EQUATIONS
"The realm of Sauron is ended!" said Gandalf. "The Ring-bearer has ful�lledhis Quest." And as the Captains gazed south to the Land of Mordor, itseemed to them that, blak against the pall of loud, there rose a huge shapeof shadow, impenetrable, lightning-rowned, �lling all the sky. Enormous itreared above the world, and strethed out towards them a vast threateninghand, terrible but impotent: for even as it leaned over them, a great windtook it, and it was all blown away, and passed; and then a hush fell.(J.R.R. Tolkien, The Return of the King)4.1 IntrodutionThe aim of this hapter is to show how it is possible to apply nonlinear waveletapproximation to design wavelet based adaptive shemes to solve a generallass of nonlinear problems.The iterative methods, that we propose to �nd a solution to a given non-linear equation F (u) = 0;are Inexat Newton-type methods: given u0, un+1 is omputed as follows:un+1 = un + ~�n;with ~�n approximation to �n, where �n satis�es F 0(un)�n = �F (un) and F 0(un)is the Fr�ehet derivative of F at un.In designing suh adaptive methods we follow the 1-dimensional "new ap-proah" (see Introdution) already used to design adaptive methods for linearequation (Chapter 3). In the nonlinear setting suh an approah reads asfollows: 105



106 Adaptive shemes for nonlinear equations Chapter 41. transform the initial nonlinear ontinuous problem F (u) = 0 into anequivalent 1-dimensional nonlinear problem F(u) = 0, whose unknownu is the in�nite vetor of wavelet oeÆients of the solution.2. write down a onvergent Inexat Newton-type iterative sheme for the1-dimensional problem.3. at eah iteration approximately (possibly adaptively) apply the involvedin�nite dimensional operators to �nite dimensional spaes.Here, as already mentioned in the Introdution, we don't fae the problem ofthe e�etive onstrution of the approximate appliation of nonlinear operatorsin wavelet oordinates [29℄. We rather onsider it as a "blak-box" strategyand we provide a reipe for a dynamially hoie, as the iteration proedureprogresses, of the involved toleranes, in order to guarantee the eÆieny andthe onvergene of the resulting algorithm.4.2 Notations and Preliminary resultsLet 
 � R be a Lipshitz domain. We will denote by (�; �) the L2(
) salarprodut. For sequenes v 2 `�, we will denote by IaÆ (v) the ball of entre vand radius Æ in `� topology: IaÆ (v) = fu 2 `� : ku�vk`� � Æg. For funtionsv 2 Ha(
), we will denote by IaÆ (v) the ball of entre v and radius Æ in Ha(
)topology: IaÆ (v) = fu 2 Ha(
) : ku� vkHa(
) � Æg.Now let us assume we are given a ouple f �; � 2 � = [j�0�jg, f ~ �; � 2� = [j�0�jg (�j �nite dimensional) of biorthogonal bases for L2(
), satisfyingthe following properties:(W0) Any funtion f 2 L2(
) an be deomposed in terms of either one of thetwo bases as follows:f =X�2�(f; ~ �) � =X�2�(f;  �) ~ �: (4.2.1)(W1) For any f 2 Bsp;q(
), 0 < s � S, 0 < p < 1, q > 0 the following normequivalene holds:kX� (f; ~ �) �kqBsp;q(
) 'Xj 2q(s+d( 12� 1p ))j0�X�2�j j(f; ~ �)jp1Aq=p : (4.2.2)



Setion 4.2. Notations and Preliminary results 107Remark 4.2.1: The splitting of the index set � as � = [j�0�j indiates thatthe basis funtion  � (and ~ �) are \living" at di�erent sales: � 2 �j ,supp( �) � 2�j � supp( ~ �).Remark 4.2.2: We remark that (W0) implies that the two bases are \biorthog-onal" in the following sense:( ~ �;  �0) = Æ�;�0 ; �; �0 2 � = [j�0�j: (4.2.3)Desribing how bases satisfying assumptions (W0)-(W1) an be onstrutedis beyond the goals of this work. We want to stress out that biorthogonalwavelets fall in the lass here desribed [38℄, [32℄, [25℄ and therefore they willbe used throughout this hapter.In the setting of biorthogonal wavelets we denote by u� := (f; ~ �) the waveletoeÆients in the expansion f =P�2�(f; ~ �) �. Hene the norm equivalene(4.2.2) for Besov spaes Bsp;q rewrites as follows: for all 0 < s � S, 0 < p <1,q > 0: kX� u� �kqBsp;q(
) 'Xj 2q(s+d( 12� 1p ))j0�X�2�j ju�jp1Aq=p : (4.2.4)In partiular, sine Hs(
) = Bs2;2(
), from equivalene (4.2.4) we dedue thatfor all 0 < s � S: kXj X�2�j u�(2�js �)kHs(
) ' kuk`2: (4.2.5)where u = fu�g�.Now let us briey reall some results about nonlinear approximation ina wavelet framework. In suh a setting a given funtion u 2 L2(
), whosewavelet deomposition is u =P� u� �, is approximated by a launary series:u is approximated by an element v belonging to the nonlinear spae�N = fv =X�2� v� � : v = fv�g�2� 2 �Ng; (4.2.6)ontaining all the funtions of L2(
), whose wavelet oeÆients belong to theset �N = fv 2 `2(�) : #f� : v� 6= 0g � Ng



108 Adaptive shemes for nonlinear equations Chapter 4of sequenes with at most N elements di�erent from zero. The set �N ontainsthe funtions of L2(
), whih an be expressed as a linear ombination of atmost N wavelets. A nonlinear projetorPN : L2(
)! �Nan be built as follows: given u =P� u� �, let us sort the sequene fju�jg�2�in dereasing order. We denote fju�(k)jgk2N the oeÆient of rank k:ju�(k)j � ju�(k+1)j; with k > 0:Hene the image PN (u) is de�ned by:PN (u) = NXn=1 u�(n) �(n);that is only the N greatest (in absolute value) oeÆients of u are retained. Byabuse of notation we will also indiate by PN : `2 ! �N the operator assoi-ating to the sequene u = fu�g, the oeÆients of the funtion PN (P� u� �).The auray of the orresponding approximation is diretly related to `� reg-ularity of the sequene of oeÆients of u, as stated by the following theorem[47℄, [48℄:Theorem 4.2.1: Let u = P�2� u� �. If u = fu�g� 2 `� , with � suh that0 < � < 2, thenku� PNuk`2 . infw2�N ku� wk`2 . N�( 1�� 12 )kuk`� ;where the onstants in the bounds depend only on � .In partiular, if � is suh that 1� = rd + 12 , using norm equivalene (4.2.4), weobtain kX� u� �kBr�;� (
) ' kuk`� (4.2.7)and from Theorem 4.2.1 we have that if u belongs to Br�;� (
), with � suh that1� = rd + 12 , theninfw2�N ku� wkL2(
) . ku� PNukL2(
) . N�( 1�� 12 )kukBs�;�(
):In other words, one we normalise in L2(
) the wavelet basis f �g, the naturalfuntional setting of nonlinear approximation in L2(
) is the sale of Besovspaes Br�;� (
).



Setion 4.3. Inexat Newton methods 109Let us now onsider a resaled version f � �g� of the wavelet basis f �g�,where � � = ��js �, for � 2 �j. If � is suh that 1� = rd + 12 , from normequivalene (4.2.4) we obtain:kX� u� � �kBr+s�;� (
) ' kuk`� : (4.2.8)Applying now Theorem 4.2.1 and norm equivalene (4.2.5) for Sobolev spaesto the normalised sequene u, we obtain the following result of nonlinear ap-proximation in Hs(
):Corollary 4.2.1: Let u 2 Bs+r�;� (
), with � suh that 1=� = r=d+ 1=2, thenku� PNukHs(
) . infw2�N ku� wkHs(
) . N�( 1�� 12 )kukBs+r�;� (
);where the impliit onstants in the bounds depend only on � .That is when we onsider nonlinear approximation in Hs(
) the natural fun-tional setting is the sale of Besov spaes Br+s�;� (
), where � is de�ned by therelation 1� = rd + 12 .4.3 Inexat Newton methodsLet 
 be a Lipshitz domain in R and U be an open subset of the Sobolevspae Hs(
). Given a nonlinear funtional between Sobolev spaes:F : U � Hs(
)! H t(
);we want to solve the nonlinear equationF (u) = 0:A lassial algorithm for solving nonlinear equations of type F (u) = 0 isNewton's method: given u0,ui+1 = ui + xi; with F 0(ui)xi = �F (ui);where F 0(ui) is the Fr�ehet derivative of F at ui.The method is attrative beause it onverges rapidly, whenever the initialguess u0 is suÆiently good. In [46℄, [85℄ a generalization of suh method hasbeen onsidered:Inexat Newton methods:



110 Adaptive shemes for nonlinear equations Chapter 4begininput: u0for i = 0; 1; : : :�nd si whih satis�es F 0(ui)si = �F (ui) + riset ui+1 = ui + siendoutput: ~u = ui+1endin whih at eah iteration i the involved equation F 0(ui)w = �F (ui) is solvedonly approximately, beause of the presene of the perturbative term ri, whihis possibly related to di�erent soures of error.In order to obtain the onvergene of a general inexat Newton method,aording to [85℄, we assume that F satis�es the following onditions:(A.1) There exists a solution u� 2 U of F (u) = 0, with IsÆ (u�) � U , for someÆ > 0.(A.2) On the ball IsÆ (u�) the funtional F is Fr�ehet di�erentiable and itsFr�ehet derivative F 0 is ontinuous.(A.3) At u� the Fr�ehet derivative of F is not singular.(A.4) There exist � 2 [0; 1℄ and K > 0 suh that for all u; v 2 IsÆ (u�):k(F 0(u�))�1(F 0(u)� F 0(v))kHs(
)!Hs(
) � Kku� vk�Hs(
):It has been proved in [85℄ that under assumptions (A.1)-(A.4) on the regularityof F , if the perturbations ri are hosen in a suitable way, then the sequenefuig onverges in Hs(
) to a solution u� of F (u) = 0, for any starting pointu0 2 U suÆiently lose to u�:Theorem 4.3.1: Let F : U � Hs(
) ! H t(
) satisfy assumptions (A.1)-(A.4) and ri suh that:k(F 0(ui))�1rikHs(
)k(F 0(ui))�1F (ui)kHs(
) � � < 1; for all i: (4.3.1)



Setion 4.3. Inexat Newton methods 111There exists a Æs > 0 suh that, if ku0� u�kHs(
) < Æs, then the sequene fuigof inexat Newton method onverges to u� in Hs(
) and satis�eskui+1 � u�kHs(
) � �ikui � u�kHs(
); (4.3.2)with �i � � = n� + (1 + �)��(u�)ku0 � u�k�Hs(
)(1 + �)(1� ��(u�)ku0 � u�k�Hs(
))o < 1:Let us de�ne��(u�) := supnkF 0(u�)�1(F 0(v)� F 0(w))kHs!Hskv � wk�Hs : v 6= w; v; w 2 Is�(u�)o:In order to prove Theorem 4.3.1 we need the following two results:Lemma 4.3.1: Let F : U � Hs(
) ! H t(
) satisfy assumptions (A.1)-(A.4). Then there exists a �, with � � Æ, suh that F 0(u) is not singular forall u 2 IsÆ (u�) and the following inequality holdskF 0(u)�1(F 0(v)� F 0(w))kHs!Hs � ��(u�)1� ��(u�)ku� u�kHs kv � wk�Hs; (4.3.3)for all v; w 2 Is�(u�).Proof: Consider the ase � > 0 and � = 0 separately.If � > 0 and ku� u�kHs � ��(u�)�1=�, with u 2 IsÆ (u�), thenkI�F 0(u�)�1F 0(u)kHs!Hs = kF 0(u�)�1(F 0(u�)�F 0(u))kHs!Hs � ��(u�)ku�u�k�Hs < 1and thus the Neumann seriesF 0(u)�1 = 1Xn=0(I � F 0(u�)�1F 0(u))nF 0(u�)�1onverges. Hene, asF 0(u)�1(F 0(v)� F 0(w)) = F 0(u�)�1(F 0(v)� F 0(w)) 1Xn=0[I � F 0(u�)�1F 0(u)℄n;inequality (4.3.3) follows from the de�nition of ��(u�).Now onsider the ase � = 0. By ontinuity of F 0 at u� it is lear that �0(u�)an be made as small as desired by making Æ suÆiently small. Hene it followsthat for � suÆiently small and u 2 Is�(u�), we have kI�F 0(u�)�1F 0(u)kHs < 1,so the result one more follows as above.



112 Adaptive shemes for nonlinear equations Chapter 4Lemma 4.3.2: Let F : U � Hs(
) ! H t(
) satisfy assumptions (A.1)-(A.4). Then for any u 2 Is�(u�), where � is hosen aordingly with Lemma4.3.1, the following inequality holdskF 0(u)�1(F (u�)� F (u)� F 0(u)(u� � u))kHs � ��(u�)ku� u�k1+�Hs(1 + �)(1� ��(u�)ku� � uk�Hs)(4.3.4)Proof: De�ne H : Is�(u�) ! H t(
) by H(z) = F 0(u)�1F (z), where � ishosen aordingly with Lemma 4.3.1. Then, by Lemma 4.3.1, we havekH 0(v)�H 0(w)kHs!Hs = kF 0(u)�1(F 0(v)� F 0(w))kHs!Hs� ��(u�)1� ��(u�)ku� u�kHs kv � wk�Hs; (4.3.5)for all v; w 2 Is�(u�).Now, by using [[72℄, Lemma 3.2.12℄ together with an appropriate de�nitionof the notion of integral [64℄, it followskF 0(u)�1(F (u�)� F (u)� F 0(u)(u� � u))kHs= kH(u�)�H(u)�H 0(u)(u� � u)kHs= Z 10 (H 0(u+ t(u� � u))�H 0(u))(u� � u)dtHs :Hene using inequality 4.3.5 yields Z 10 (H 0(u+ t(u� � u))�H 0(u))(u� � u)dtHs� Z 10 kH 0(u+ t(u� � u))�H 0(u)kHsku� � ukHsdt� ��(u�)1� ��(u�)ku� u�kHs Z 10 k(u+ t(u� � u))� uk�Hsku� � ukHsdt� ��(u�)1� ��(u�)ku� u�kHs ku� � uk�+1Hs Z 10 t�dt� ��(u�)ku� u�k�+1Hs(1 + �)(1� ��(u�)ku� � uk�Hs) : (4.3.6)
Proof of Theorem 4.3.1: Set Æs := �, where � is hosen aordingly toLemma 4.3.1. The proof is by indution.



Setion 4.3. Inexat Newton methods 113Assume kui�u�kHs � ku0�u�kHs � Æs, for some i � 0. Then ui 2 IsÆs(u�),hene, by Lemma 4.3.1, F 0(ui)�1 exists. Thus the i-th stage of the inexatNewton method is well de�ned. Now si = F 0(ui)�1(�F (ui) + ri) and heneui+1 � u� = ui + F 0(ui)�1(�F (ui) + ri)� u�= F 0(ui)�1(F (u�)� F (ui)� F 0(ui)(u� � ui) + ri):Sine the following two inequalities holdkF 0(ui)rikHs � �kF 0(ui)�1F (ui)kHs ;kF 0(ui)�1F (ui)kHs � kF 0(ui)�1(F (u�)� F (ui)� F 0(ui))(u� � ui)kHs + kui � u�kHs ;we onlude thatkui+1�u�kHs � �kui�u�kHs+(1+�)kF 0(ui)�1(F (u�)�F (ui)�F 0(ui))(u��ui)kHs:(4.3.7)Using inequality (4.3.4) yieldskui+1 � u�kHs � n� + (1 + �)��(u�)kui � u�k�Hs(1 + �)(1� ��(u�)kui � u�k�Hs)okui � u�kHs ; (4.3.8)and by hoosingÆs := minn�;�(1 + �)(1� �)2 + �(1� �) ��(u�)�1�1=�o;we have n� + (1+�)��(u�)kui�u�k�Hs(1+�)(1���(u�)kui�u�k�Hs)o < 1.Thus it follows kui+1 � u�kHs < kui � u�kHs ;whih yields by indutionkui+1 � u�kHs � n� + (1 + �)��(u�)ku0 � u�k�Hs(1 + �)(1� ��(u�)ku0 � u�k�Hs)okui � u�kHs ;for all i.Remark 4.3.1: From Theorem 4.3.1 one has that ui 2 IsÆs(u�) for all i.



114 Adaptive shemes for nonlinear equations Chapter 44.4 Nonlinear Newton4.4.1 The problemLet U be an open subset of the Sobolev spae Hs(
), s < S. Consider a mapbetween Sobolev spaes:F : U � Hs(
)! F (U) � H t(
); t < S: (4.4.1)We want to �nd a solution u� to the nonlinear funtional equationF (u) = 0; (4.4.2)using an adaptive wavelet method based on an inexat Newton sheme; thenwe assume that F satis�es assumptions (A.1)-(A.4).Moreover we assume that F , restrited to more regular spaes, preserves suhregularity:(A.5) For some r > 0 it holdsFU\Bs+r�;� (
) : U \ Bs+r�;� (
)! Bt+r�;� (
); s; t < S;where 0 < � < 2 is suh that 1=� = r=d+ 1=2.Finally we assume that:(A.6) The solution u� belongs to U \ Bs+r�;� (
).Remark 4.4.1: From Corollary 4.2.1, as by assumption u� belongs to Bs+r�;� (
),it follows that ku� � PNu�kHs(
) . N�( 1�� 12 )ku�kBs+r�;� (
); (4.4.3)where PN is the non linear projetor whih retains the N greatest, in absolutevalue, wavelet oeÆients of a given funtion.Fixed a number M of degrees of freedom, our aim is to provide an approxima-tion u�M 2 �M ;that is u�M is built using at most M wavelet funtions.We would like an approximation u�M behaving possibly as well as the bestM terms wavelet approximation PMu�.To ahieve this goal, aording to the abstrat approah desribed in Se-tion 4.1, we �rst translate (4.4.2) in terms of wavelet oeÆients, thus obtaining



Setion 4.4. Nonlinear Newton 115an1-dimensional problem: we deompose the involved funtions u and F (u),by hoosing two suitable resaled versions f � �g and f ̂�g of the wavelet basisf �g: u 2 Hs(
); u =X� u� � �; with � � = 2�js �; (4.4.4)F (u) 2 H t(
); F (u) =X� f� ̂�; with  ̂� = 2�jt �; (4.4.5)and we build a disrete version F of the mapping F , ating on wavelet oeÆ-ients as follows: F : u = fu�g ! F(u) := f = ff�g: (4.4.6)Thanks to norm equivalene (4.2.5) for Sobolev spaes, the previous mapF results to be a mapping between `2 spaes:F : D � `2 ! `2: (4.4.7)Moreover, using norm equivalene (4.2.8) for Besov spaes, assumption (A.5)implies that F , restrited to a more regular spae, preserves suh regularity:FD\`� : D \ `� ! `� ;with 0 < � < 2 suh that 1=� = r=d+ 1=2.Then solving the1-dimensional problem F(u) = 0 is equivalent to solvingthe initial ontinuous problem F (u) = 0.Thanks to assumption (A.6) there exists u� 2 D \ `� suh that F(u�) =0. Nonlinear approximation provides with a natural benhmark for adaptiveshemes; indeed if we knew u�, then it would follow, by using Theorem 4.2.1,that ku��PMu�k`2 .M�( 1�� 12 )ku�k`� . But u� is the unknown of our problem,so we do not have aess to PMu� exatly. Hene, given the number of degreesof freedom M , what we atually want is to design an adaptive sheme whihbuilds an approximation u�M to u�, withu�M 2 �M ;suh that u�M behaves almost as well as PMu�.4.4.2 The algorithmThe adaptive sheme we propose here, namely Nonlinear Newton, is an Inex-at Newton-type method written for the1-dimensional problem F(u) = 0, in



116 Adaptive shemes for nonlinear equations Chapter 4whih, at eah iteration i, the approximation ui+1 is fored to belong to a non-linear spae �Ni+1 , that is it is fored to be built using at most Ni+1 degrees offreedom, where Ni+1 is hosen aordingly to the auray of the approxima-tion ui at the previous step. Moreover at eah iteration i two further soures ofinexatness are introdued to deal with the problem of the approximate (pos-sibly adaptive) appliation of in�nite dimensional operators: �Ai will denote anapproximation to F 0i := F 0(ui) and �Fi an approximation to Fi := F(ui). Therate of these ompressions will be adapted, at eah iteration i, to the auray(and hene to the number Ni+1 of d.o.f.) of the approximation ui+1 that wewant to build. The method we propose is the following:Nonlinear Newtonbegininput: M;u0set i = 0repeat the following stepsompute �Ai approximation to F 0iompute �Fi approximation to Fihoose Ni+1set ui+1 = PNi+1(ui � �A�1i �Fi)update i+ 1! iuntil Ni =Moutput: ~u = uiendwhere PNi+1 is the non linear wavelet projetor, whih fores ui+1 to belong tothe non linear spae �Ni+1 .4.4.3 The analysis of the methodFirst of all we note that Nonlinear Newton an be rewritten as an InexatNewton sheme:begin



Setion 4.4. Nonlinear Newton 117input: M;u0set i = 0repeat the following stepshoose the perturbative term ri�nd si whih satis�es F 0isi = �Fi + riset ui+1 = ui + siupdate i+ 1! iuntil Ni+1 =Mendwith ri = Fi �F 0i( �A�1i �Fi + (I � PNi+1)(ui � �A�1i �Fi)): (4.4.8)Indeed the following equalities hold:ui + si = ui + (F 0i)�1(�Fi + ri)= ui + (F 0i)�1(�Fi + Fi � F 0i( �A�1i �Fi + (I � PNi+1)(ui � �A�1i �Fi)))= ui � ( �A�1i �Fi + ui � �A�1i �Fi � PNi+1(ui � �A�1i �Fi))= PNi+1(ui � �A�1i �Fi):The perturbative term ri takes into aount, at step i, the di�erent souresof inexatness: the non linear projetor PNi+1 , the approximation �Ai and theapproximation �Fi. Step by step, we an tune suh soures of inexatness inorder to build adaptively the approximate solution ui. Roughly speaking whenui is far from a solution of F (u) = 0, we an perform the step of our methodemploying high perturbative term (ri is large), using instead a lower pertur-bation when ui is nearer.More generally it is useless to build a bad approximation with a �ne reso-lution or a good approximation with a oarse resolution. In both ases we usea resolution whih is not of the same order as the approximation. The righthoie, if we want to obtain an eÆient sheme, is to adapt the resolution tothe quality of the approximation, that is to its distane from the exat solu-tion, in suh a way to redue the omputational ost, but not to loose at thesame time the onvergene.



118 Adaptive shemes for nonlinear equations Chapter 4The advantage of the reformulation of Nonlinear Newton as an inexatNewton sheme is that we an use Theorem 4.3.1 to prove that NonlinearNewton onverges in `� . In order to apply Theorem 4.3.1 we need to assumein `� onditions on the regularity of F similar to (A.1)-(A.4):(B.1) There exists u� 2 D \ `� verifying F(u�) = 0, with I�Æ (u�) � D \ `� , forsome Æ > 0.(B.2) On the ball I�Æ (u�), the funtional F is Fr�ehet di�erentiable and itsFr�ehet derivative F 0 is ontinuous:F 0 2 C0(I�Æ (u�) � `� ;L(`� ; `� )):(B.3) At u� the Fr�ehet derivative F 0 is not singular.(B.4) There exist �� 2 [0; 1℄ and K� > 0 suh that for all u; v 2 I�Æ (u�) itholds: kF 0(u�)�1(F 0(u)� F 0(v))k`�!`� � K�ku� vk��`� :We reall that onvergene in `� , for � < 2, implies onvergene in `2. Howeverin general we an hope that onvergene in `2 is faster than onvergene in `� .Assumptions (A.2)-(A.4) on F translate into the following assumptions on F :(B.5) On the ball I2Æ (u�), the funtional F is Fr�ehet di�erentiable and itsFr�ehet derivative F 0 is ontinuous:F 0 2 C0(I2Æ (u�) � `2;L(`2; `2)):(B.6) At u� the Fr�ehet derivative F 0 is not singular.(B.7) There exist �2 2 [0; 1℄ and K2 > 0 suh that for all u; v 2 I2Æ (u�) it holds:kF 0(u�)�1(F 0(u)�F 0(v))k`2!`2 � K2ku� vk�2`2 :Let us now ollet the following two Lemmas: the �rst one, dealing with nonsingularity of the Fr�ehet derivative, is the analog of Lemma 4.3.1:Lemma 4.4.1: Let F be a mapping from D � `2 into `2, satisfying onditionsfrom (B.1) to (B.7), for some � < 2. Let � = �� 1minf�2;��g where� = maxn supfkF 0(u�)�1(F 0(u)� F 0(v))k`�!`�ku� vk��`� ; u 6= v; u; v 2 I�Æ�(u�)g;supfkF 0(u�)�1(F 0(u)�F 0(v))k`2!`2ku� vk�2`2 u 6= v; u; v 2 I2Æ�(u�)go:Then for all ui 2 I��(u�) (whih implies ui 2 I2�(u�)), it follows that F 0i :=F 0(ui) is not singular.



Setion 4.4. Nonlinear Newton 119The seond ontains a lassial result about perturbation of linear operators:Lemma 4.4.2: Let A� and C be two linear and ontinuous operators from `2into `2. Moreover suppose that A� and I + A��1C are not singular, then thefollowing inequality holds:k(A� + C)�1 �A�1k`2!`2 � k(A� + C)�1k`2!`2kA�1k`2!`2kCk`2!`2 (4.4.9)Proof: We have the following inequalities:k(A� + C)�1 �A�1k`2!`2= k(I +A�1C)�1A�1 �A�1k`2!`2= k[(I +A�1C)�1 � I℄A�1k`2!`2= k[(I +A�1C)�1 � (I +A�1C)�1(I +A�1C)℄A�1k`2!`2= k(I +A�1C)�1(I � I �A�1C)A�1k`2!`2� k(I +A�1C)�1A�1k`2!`2kCk`2!`2kA�1k`2!`2� k(A� + C)�1k`2!`2kCk`2!`2kA�1k`2!`2:Let us suppose that the approximation �A�1i to (F 0i)�1 has the following form:�A�1i := (F 0i + E(F 0i))�1;where E(F 0i) is a linear funtional representing the orretion added to F 0i ateah iteration i.Now we are able to prove the following results:Lemma 4.4.3: Let F be a mapping from D � `2 into `2, satisfying onditionsfrom (B.1) to (B.7), for some � < 2. If ui belongs to the ball I��(u�) for all i,where � is hosen aordingly to Lemma 4.4.1 then, for some positive onstantsC0; C1; : : : ; C4; C 01; : : : ; C 04, the following inequalities hold:kFik`2 � C0; (4.4.10)C1 � kF 0ik`2!`2 � C2; (4.4.11)C 01 � kF 0ik`�!`� � C 02; (4.4.12)C3 � k(F 0i)�1k`2!`2 � C4; (4.4.13)C 03 � k(F 0i)�1k`�!`� � C 04: (4.4.14)Proof: Continuity of F yields immediately inequality (4.4.10). In parti-ular it is not restritive to assume kFik`2 < 1, for all ui 2 I�Æ�(u�). In fat itsuÆes to onsider the `2 normalized funtion F(u) := 1C0F(u), whih veri�es



120 Adaptive shemes for nonlinear equations Chapter 4kF(ui)k`2 � 1, for all ui 2 I�Æ�(u�).From Lemma 4.4.1, i.e. F 0i is not singular for all ui 2 I�Æ�(u�) and from theontinuity of F 0 we dedue inequalities (4.4.11) and (4.4.12).Finally by using the ontinuity of the inverse of the Fr�ehet derivative andinequality k(F 0i)�1k � 1=kF 0ik, we obtain inequalities (4.4.13) and (4.4.14).Lemma 4.4.4: Under the same hypotheses of Lemma 4.4.3, let E(F 0i) 2L(I2�(u�) � `2; `2) \ L(I��(u�) � `� ; `�) satisfy:kE(F 0i)k`2!`2 � 12C4 ; (4.4.15)kE(F 0i)k`�!`� < 12C 04 ; (4.4.16)then the following inequalities hold:k �A�1i k`2!`2 � 2C4; (4.4.17)k �A�1i k`�!`� � 2C 04: (4.4.18)Moreover, denoting by hi := ui� u� the error ommitted at step i, there exists" > 0 depending on I��(u�) suh that the following inequality holds:khik`2 � kFik`2=(C2 + "): (4.4.19)Proof: Using Lemma 4.4.2 yields:k �A�1i k`2!`2 = k(F 0i + E(F 0i))�1k`2!`2� k(F 0i + E(F 0i))�1 � (F 0i)�1k`2!`2 + k(F 0i)�1k`2!`2� k(F 0i + E(F 0i))�1k`2!`2k(F 0i)�1k`2!`2kE(F 0i)k`2!`2+k(F 0i)�1k`2!`2;from whih we dedue:k �A�1i k`2!`2 � k(F 0i)�1k`2!`21� kE(F 0i)k`2!`2k(F 0i)�1k`2!`2 :Using now inequalities (4.4.13) and (4.4.15), we obtain:k �A�1i k`2!`2 � 2C4:Similarly we obtain k �A�1i k`�!`� � 2C 04:



Setion 4.4. Nonlinear Newton 121Now let us set G(ui) = F(ui) � F 0(u�)ui. As G 0(u�) = 0 (the zero lineartransformation), then there exists " depending on I2Æ�(u�) suh thatkG(ui)� G(u�)k`2 � "kui � u�k`2; (4.4.20)for all ui 2 I2Æ�(u�). By using inequality (4.4.20) we getkF(ui)� F(u�)k`2 = kF 0(u�)ui � F 0(u�)u� + G(ui)� G(u�)k`2� kF 0(u�)ui � F 0(u�)u�k`2 + kG(ui)� G(u�)k`2� kF 0(u�)k`2!`2kui � u�k`2 + "kui � u�k`2whih yields, as F(u�) = 0,khik`2 � kF(ui)k`2kF 0(u�)k`2!`2 + " � kF(ui)k`2C2 + " :
Now we are ready to prove the following Theorem onerning the onvergeneof the sheme, where we denote by hi := ui � u� the error ommitted at stepi:Theorem 4.4.1: Let F be a mapping from D � `2 into `2, satisfying on-ditions from (B.1) to (B.7), for some � < 2. Assume E(F 0i) 2 L(I2Æ (u�) �`2; `2)\L(I�Æ (u�) � `� ; `� ). There exist a Æ� > 0 and onstants D1; D2; D3 andD4 suh that if ku0 � u�k`� < Æ� and if, at eah iteration i, we hoose ordi-nately E(F 0i); �Fi and Ni+1 in order to ful�l the following onditions for some0 < � < � : kE(F 0i)k`2!`2 � D1; (4.4.21)kE(F 0i)k`�!`� � D2; (4.4.22)k �Fi � Fik`2 � D3kFik`2; k �Fi �Fik`� � D3kFik`� ; (4.4.23)Ni+1 � D4maxnNi�C( �Ai; �Fi; �)kuik`�kFik`� � ����� ;�C( �Ai; �Fi; �)kuik`�kFik`2 � 2�2�� o;(4.4.24)where C( �Ai; �Fi; �) and C( �Ai; �Fi; �) are expliitly omputable onstants depend-ing on �Ai; �Fi and � (respetively on �), then the sequene fuig onverges to u�in `� and in `2 (with ui 2 I�Æ�(u�) � I2Æ�(u�)).



122 Adaptive shemes for nonlinear equations Chapter 4In order to prove Theorem 4.4.1, we need to reall the following Lemma:Lemma 4.4.5: Let � suh that 0 < � < � < 2. If ui 2 �Ni, then we havek(I � PNi+1)(ui � �A�1i �Fi)k`� � C( �Ai; �Fi; �)�Ni+1Ni �� ����� kuik`� (4.4.25)where C( �Ai; �Fi; �) is an expliitly omputable onstant depending on �Ai; �Fiand an �.Proof: First we note that ui 2 �Ni , that is ui has at most Ni elementsdi�erent from zero, implies ui 2 `�, for all � > 0. By using (quasi) normequivalenes on sequenes with a �nite number of non zero elements, it followsthat kuik`� � N1=��1=�i kuik`� .Moreover, as ui � �A�1i �Fi 2 �Mi , for some Mi, we have that ui � �A�1i �Fi 2 `�.Finally, applying Theorem 4.2.1 to ui � �A�1i �Fi, we have:k(I � PNi+1)(ui � �A�1i �Fi)k`� � C�N�( 1�� 1� )i+1 kui � �A�1i �Fik`�� C�C�( �Ai; �Fi)N�( 1�� 1� )i+1 kuik`�� C( �Ai; �Fi; �)N�( 1�� 1� )i+1 N 1�� 1�i kuik`� ;(4.4.26)where we used the inequality kui � �A�1i �Fik`� � C�( �Ai; �Fi)kuik`� .Proof of Theorem 4.4.1:Thanks to assumptions from (B.1) to (B.4), we an use Theorem 4.3.1: re-alling that ri = Fi � F 0i( �A�1i �Fi + (I � PNi+1)(ui � �A�1i �Fi)), if the followingondition k(F 0i)�1rik`�k(F 0i)�1Fik`� � � < 1 (4.4.27)holds for all i, there exists a Æ� suh that if ku0 � u�k`� < Æ� , then fuig on-verges to u� in `� and ui 2 I�Æ� (u�) for all i.



Setion 4.4. Nonlinear Newton 123Analogously thanks to assumptions from (B.5) to (B.7), we an use Theo-rem 4.3.1: if the following onditionk(F 0i)�1rik`2k(F 0i)�1Fik`2 � � < 1 (4.4.28)holds for all i, there exists a Æ2 suh that if ku0 � u�k`2 < Æ2, then fuig on-verges to u� in `2 and ui 2 I2Æ2(u�) for all i.In partiular, if both (4.4.27) and (4.4.28) hold, hoosing Æ� = minfÆ� ; Æ2g, ifthe initial guess u0 ful�ls ku0 � u�k`� < Æ�, whih implies ku0 � u�k`2 < Æ�,then fuig onverges to u� in `2 and in `� . As a onsequene we also have thatui 2 I�Æ�(u�) � I2Æ�(u�) for all i.Hene, in order to prove onvergene in `� and in `2, we only need to showthat inequalities (4.4.27) and (4.4.28) are ful�lled, if we hoose�A�1i := (F 0i + E(F 0i))�1; �Fi; and Ni+1satisfying onditions (4.4.21)-(4.4.24), for suitable hoies of the onstantsD1; D2; D3 and D4.Let us now remark that the following inequalities hold:k(F 0i)�1rik`�k(F 0i)�1Fik`� � k(I � �A�1i F 0i)((F 0i)�1Fi)k`�k(F 0i)�1Fik`�| {z }+ k �A�1i ( �Fi �Fi)k`�k(F 0i)�1Fik`�| {z }T A+ k(I � PNi+1)(ui � �A�1i �Fi)k`�k(F 0i)�1Fik`�| {z };Uand k(F 0i)�1rik`2k(F 0i)�1Fik`2 � k(I � �A�1i F 0i)((F 0i)�1Fi)k`2k(F 0i)�1Fik`2| {z }+ k �A�1i ( �Fi �Fi)k`2k(F 0i)�1Fik`2| {z }T W+ k(I � PNi+1)(ui � �A�1i �Fi)k`2k(F 0i)�1Fik`2| {z } :OWe only need to prove that, for suitable hoies of the onstants D1; D2; D3and D4, under assumptions (4.4.21)-(4.4.24), eah term on the right-hand side



124 Adaptive shemes for nonlinear equations Chapter 4of the above two inequalities is smaller or equal than �3 .First we reall that the following inequalities hold:k(F 0i)�1Fik`� � 1kF 0ik`�!`� kFik`� ; (4.4.29)k(F 0i)�1Fik`2 � 1kF 0ik`2!`2 kFik`2 : (4.4.30)Let us now onsider T := k(I � �A�1i F 0i)((F 0i)�1Fi)k`2k(F 0i)�1Fik`2� kI � �A�1i F 0ik`2!`2� k �A�1i k`2!`2kE(F 0i)k`2!`2where we used the fat that I � �A�1i F 0i = �A�1i ( �Ai �F 0i) = �A�1i E(F 0i):From assumption (4.4.21), i.e kE(F 0i)k`2!`2 � D1, we haveT � D1k �A�1i k`2!`2:If D1 veri�es D1 � 12C4 ;then ondition (4.4.21) implies that inequality (4.4.15) is ful�lled and we anuse inequality (4.4.17), whih yieldsT � 2C4D1:Moreover if D1 is hosen to also satisfy 2C4D1 � �3 , i.e.D1 � minf 12C4 ; �6C4g;then T � �3 :Analogously we have thatT := k(I � �A�1i F 0i)((F 0i)�1Fi)k`�k(F 0i)�1Fik`�� kI � �A�1i F 0ik`�!`�� k �A�1i k`�!`�kE(F 0i)k`�!`� :



Setion 4.4. Nonlinear Newton 125If D2 veri�es D2 � 12C04 then assumption (4.4.22) implies that inequality(4.4.16) is satis�ed and we an use inequality (4.4.18) obtaining T � 2C 04D2.Moreover if D2 is hosen to also satisfy 2C 04D2 � �3 , i.e.D2 � minf 12C 04 ; �6C 04g;then T � �3 :Now we onsider W := k �A�1i ( �Fi �Fi)k`2k(F 0i)�1Fik`2� k �A�1i k`2!`2k �Fi � Fik`2k(F 0i)�1Fik`2 :Using inequalities (4.4.17) and (4.4.30) yieldsW � 2C4k �Fi � Fik`2k(F 0i)�1Fik`2� 2C4kF 0ik`2!`2k �Fi � Fik`2kFik`2 :Now thanks to inequality (4.4.11), i.e. kF 0ik`2!`2 � C2, we haveW � 2C4C2k �Fi �Fik`2kFik`2 :From assumption (4.4.23), i.e. k �Fi � Fik`2 � D3kFik`2 , we obtainW � 2C4C2D3:If D3 is hosen suh that 2C4C2D3 � �3 , i.e.D3 � �6C4C2 ;then W � �3 :Analogously we have thatA := k �A�1i ( �Fi � Fi)k`�k(F 0i)�1Fik`�� k �A�1i k`�!`�k �Fi � Fik`�k(F 0i)�1Fik`� :



126 Adaptive shemes for nonlinear equations Chapter 4Using inequalities (4.4.18) and (4.4.29) yieldsA � 2C 04k �Fi � Fik`�k(F 0i)�1Fik`2� 2C 04kF 0ik`�!`�k �Fi � Fik`�kFik`� :Now thanks to inequality (4.4.12) we haveA � 2C 04C 02k �Fi �Fik`�kFik`� :From assumption (4.4.23), i.e. k �Fi �Fik`� � D3kFik`� , we obtainA � 2C 04C 02D3:If D3 is also hosen suh that 2C 04C 02D3 � �3 , i.e.D3 � minf �6C 04C 02 ; �6C4C2g;then A � �3 :Now in order to prove onvergene in `2 and in `� , we only need to estimatethe last two terms: O and U .By using Theorem 4.2.1, as ui � �A�1i �Fi 2 `� , we haveO := k(I � PNi+1)(ui � �A�1i �Fi)k`2k(F 0i)�1Fik`2� C�N� 2��2�i+1 kui � �A�1i �Fik`�k(F 0i)�1Fik`2 :Using inequalities (4.4.30) and (4.4.11) yieldsO � C�N� 2��2�i+1 kF 0ik`2!`2kui � �A�1i �Fik`�kFik`2� C2C�N� 2��2�i+1 kui � �A�1i �Fik`�kFik`2� C2C�C� ( �Ai; �Fi)N� 2��2�i+1 kuik`�kFik`2 ;� C2C( �Ai; �Fi; �)N� 2��2�i+1 kuik`�kFik`2 ;



Setion 4.4. Nonlinear Newton 127where we used kui � �A�1i �Fik`� � C� ( �Ai; �Fi)kuik`� :From assumption (4.4.24), we have in partiularNi+1 � D4 �C( �Ai; �Fi;�)kuik`�kFik`2 � 2�2�� .Hene O � C2D� 2��2�4 :If D4 is hosen suh that C2D� 2��2�4 � �3 , i.e.D4 � �3C2� � 2�2�� ;then O � �3 :Finally, by using Lemma 4.4.5, we haveU := k(I � PNi+1)(ui � �A�1i �Fi)k`�k(F 0i)�1Fik`�� C�C�( �Ai; �Fi)N �����i N� �����i+1 kuik`�k(F 0i)�1Fik`� :Using inequalities (4.4.29) and (4.4.12) yieldsU � C( �Ai; �Fi; �)N �����i N� �����i+1 kF 0ik`�!`�kuik`�kFik`�� C 02C( �Ai; �Fi; �)N �����i N� �����i+1 kuik`�kFik`� :From assumption (4.4.24) we have in partiularNi+1 � D4Ni �C( �Ai; �Fi;�)kuik`�kFik`� � ����� .Hene U � C 02D� �����4 :If D4 is hosen suh that C 02D� �����4 , i.e.D4 � �3C 02� � ����� ;then U � �3 :Hene, if we hoose D4 � maxn�3C2� � 2�2�� ;�3C 02� � �����o;



128 Adaptive shemes for nonlinear equations Chapter 4then we have O � �3 and U � �3 .Hene we proved that ifD1 � �6C4 ;D2 � �6C 04 ;D3 � minn �6C4C2 ; �6C 04C 02o;D4 � maxn�3C2� � 2�2�� ;�3C 02� � �����o;then k(F 0i)�1rik`�k(F 0i)�1Fik`� � T +A+ U � �;and k(F 0i)�1rik`2k(F 0i)�1Fik`2 � T +W +O � �;with � < 1. Thus, by virtue of Theorem 4.3.1, we proved onvergene in `�and in `2.Remark 4.4.2: Let us onsider ondition (4.4.24):Ni+1 � D4maxnNi�C( �Ai; �Fi; �)kuik`�kFik`� � ����� ;�C( �Ai; �Fi; �)kuik`�kFik`2 � 2�2�� o:Convergene in `� guarantees that kuik`� is uniformly bounded; in this way thehoie of Ni+1 is essentially driven by Ni and 1kFik . 2We now prove the laimed result of quadrati onvergene of the sheme, undersome slightly stronger assumptions on the hoie of E(F 0i); �Ai and Ni+1:Theorem 4.4.2: Let F be a mapping from D � `2 into `2, satisfying on-ditions from (B.1) to (B.7), for some � < 2. Assume E(F 0i) 2 L(I2Æ (u�) �`2; `2) \ L(I�Æ (u�) � `� ; `� ). There exist a Æ� > 0 and onstants D1; D2; D3and D4, suh that if ku0 � u�k`� < Æ� and if, at eah iteration i, we hooseordinately E(F 0i); �Fi and Ni+1 in order to ful�l the following onditions forsome 0 < � < � : kE(F 0i)k`2!`2 � D1kFik`2; (4.4.31)



Setion 4.4. Nonlinear Newton 129kE(F 0i)k`�!`� � D2; (4.4.32)k �Fi � Fik`2 � D3kFik2̀2; k �Fi �Fik`� � D3kFik`� ; (4.4.33)Ni+1 � D4maxnNi�C( �Ai; �Fi; �)kuik`�kFik`� � ����� ;�C( �Ai; �Fi; �)kuik`�kFik2̀2 � 2�2�� o;(4.4.34)where C( �Ai; �Fi; �) and C( �Ai; �Fi; �) are expliitly omputable onstants depend-ing only on �Ai; �Fi and on � (respetively on �), then the sequene fuig on-verges quadratially to u� in `2:khi+1k`2 � khik2̀2 for all i 2 N : (4.4.35)Proof: As it is not restritive to assume kFik`2 � C0 < 1, for all ui 2 I�Æ�(u�),trivially we have kFik2̀2 � kFik`2. Now it is simple to see that hoosingD1; D2; D3 and D4 aording to the proof of Theorem 4.4.1, yields onver-gene in `� and `2. By the way we remark that with suh hoies of theonstants we an use inequalities (4.4.17) and (4.4.18).If in addition we impose some further onditions on the hoie ofD1; D2; D3and D4 we will �nally obtain quadrati onvergene in `2.Let us now introdue the following notation:�hi = �ui � u� with �ui+1 = ui � (F 0i)�1Fi;that is �ui+1 is the result of the appliation of a step of the lassial Newtonmethod to ui.From now on, we hoose Æ� = minfÆ2; Æ� ; �g, where � is hosen aording toLemma 4.4.1. It follows that F 0i := F 0(ui) is not singular for all ui 2 I�Æ�(u�).Moreover, as by hypothesis the operator E(F 0i) belongs to L(I2Æ�(u�) � `2; `2)and it is hosen suh that kE(F 0i)k`2!`2 < 1=k(F 0i)�1k`2!`2, we also have thatI + (F 0i)�1E(F 0i) is not singular for all ui 2 I2Æ�(u�).Hene we an apply Lemma 4.4.2 with A� = F 0i and C = E(F 0i), obtainingthe following inequality:k(F 0i + E(F 0i))�1 � (F 0i)�1k`2!`2� k(F 0i + E(F 0i))�1k`2!`2k(F 0i)�1k`2!`2kE(F 0i)k`2!`2:(4.4.36)



130 Adaptive shemes for nonlinear equations Chapter 4As �A�1i = (F 0i + E(F 0i))�1 and realling (4.4.8), we have:hi+1 = hi � (F 0i)�1Fi + (F 0i)�1ri= hi � (F 0i)�1Fi + (F 0i)�1fFi � F 0i[ �A�1i �Fi + (I � PNi+1)(ui � �A�1i �Fi)℄g= hi � (F 0i)�1 �Fi + [(F 0i)�1Fi � �A�1i �Fi℄� (I � PNi+1)(ui � �A�1i �Fi)= hi � (F 0i)�1Fi + [ �A�1i (Fi � �Fi) + ((F 0i)�1 � �A�1i )Fi℄�(I � PNi+1)(ui � �A�1i �Fi);whih, taking `2 norm and using inequality (4.4.36), yields:khi+1k`2 � khi � (F 0i)�1Fik`2 + k �A�1i (Fi � �Fi)k`2 + k((F 0i)�1 � �A�1i )Fik`2+k(I � PNi+1)(ui � �A�1i �Fi)k`2� k�hi+1k`2 + k �A�1i k`2!`2kFi � �Fik`2 + k(F 0i)�1 � �A�1i k`2!`2kFik`2+k(I � PNi+1)(ui � �A�1i �Fi)k`2� k�hi+1k`2| {z }+ k �A�1i k`2!`2kFi � �Fik`2| {z }Q U+ k �A�1i k`2!`2k(F 0i)�1k`2!`2kE(F 0i)k`2!`2kFik`2| {z }A+ k(I � PNi+1)(ui � �A�1i �Fi)k`2| {z } :DIn order to obtain quadrati onvergene, we only need to prove that underassumptions (4.4.31)-(4.4.34), eah term on the right-hand side of the aboveinequality is smaller or equal than 14khik2̀2.First we remark that Q := k�hi+1k`2 � 14khik2̀2holds thanks to lassial results on quadrati onvergene of Newton method,for a starting point suÆiently near to u�.Consider now U := k �A�1i k`2!`2kFi � �Fik`2 :Using inequality (4.4.17) yieldsU � 2C4kFi � �Fik`2:From assumption (4.4.33), i.e. k �Fi �Fik`2 � D3kFik2̀2 , we have thatU � 2C4D3kFik2̀2:



Setion 4.4. Nonlinear Newton 131By using inequality (4.4.19), i.e. khik`2 � kFik`2=(C2 + "), we obtainU � 2C4D3(C2 + ")2khik2̀2:If D3 is hosen suh that 2C4D3(C2 + ")2 � 14 , i.e.D3 � 18C4(C2 + ")2 ;then U � 14khik2̀2:Now let us estimateA := k �A�1i k`2!`2k(F 0i)�1k`2!`2kE(F 0i)k`2!`2kFik`2:Using inequalities (4.4.17) and (4.4.11) yieldsA � 2C24kE(F 0i)k`2!`2kFik`2:From assumption (4.4.31), i.e. kE(F 0i)k`2!`2 � D1kFik`2, we obtainA � 2C24D1kFik2̀2 ;whih yields, by using inequality (4.4.19),A � 2C24D1(C2 + ")2khik2̀2:If D1 is hosen suh that 2C24D1(C2 + ")2 � 14 , i.e.D1 � 18C24(C2 + ")2 ;then A � 14khik2̀2 :Finally we onsider D := k(I � PNi+1)(ui � �A�1i �Fi)k`2� C�N� 2��2�i+1 kui � �A�1i �Fik`�� C( �Ai; �Fi; �)N� 2��2�i+1 kuik`� : (4.4.37)From assumption (4.4.34), we have Ni+1 � D4 �C( �Ai; �Fi;�)kuik`�kFik2̀2 � 2�2�� . HeneD � D� 2��2�4 kFik2̀2:



132 Adaptive shemes for nonlinear equations Chapter 4By using inequality (4.4.19), we haveD � D� 2��2�4 (C2 + ")2khi+1k2̀2 :If D4 is hosen suh that D� 2��2�4 (C2 + ")2 � 14 , i.e.D4 � �4(C2 + ")2� 2�2�� ;then D � 14khik2̀2 :Hene we proved khi+1k`2 � Q+ U + A+D � khik2̀2 : (4.4.38)
Remark 4.4.3: Given the number of degrees of freedom M , what we atuallyobtain is an approximation u�M to u�, whih satis�es, thanks to (4.4.37) and(4.4.38): ku� � u�Mk`2 � 34khik2̀2 + C( �Ai; �Fi; �)M�( 1�� 12 )ku�Mk`� :Heuristially this means that we are further, but not so far, thanks to theabove result of onvergene, from the natural benhmark provided by non linearapproximation: ku� � PMu�k`2 � C�M�( 1�� 12 )ku�k`� :Remark 4.4.4: Conditions (4.4.31)-(4.4.34) are not ompletely reliable froma omputational point of view, beause they imply the knowledge of quantities,like kFik, kFi� �Fik or kE(F 0i)k, that we do not want to ompute at any stepsof our algorithm. Hene, given ui, we need a strategy for building �Fi and�Ai, whih provides estimates for kFik, kFi � �Fik and kE(F 0i)k involving onlyavailable quantities suh as �Fi and �Ai. Results in this diretion an be foundin [30℄.4.5 Open problems and perspetivesWe proposed an extension of the Nonlinear Rihardson algorithm to nonlinearproblems. The Rihardson sheme has been replaed by an inexat Newton



Setion 4.5. Open problems and perspetives 133sheme, where the "inexatness" omes both from the approximate applia-tion of the involved operators (this issue is somehow taken for granted: it isassumed that there is a proedure whih applies these operators up to anypresribed auray) and from the thresholding error oming from the appli-ation of the nonlinear projetor. Under some regularity assumptions on thenonlinear operators, results similar to the linear ase are obtained. What it isindeed neessary for a deeper understanding of the reliability of the methodare onrete examples of nonlinear problems to be treated by suh an approahand numerial tests.
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Chapter 5ADAPTIVITY & WAVELETPACKETS
"Well, this is the end, Sam Gamgee," said a voie by his side. And there wasFrodo, pale and worn, and yet himself again; and in his eyes there was peaenow, neither strain of will, nor madness, nor any fear. His burden was takenaway. "Yes," said Frodo. "But do you remember Gandalf 's words: EvenGollum may have something yet to do? So let us forgive him! For the Questis ahieved, and now all is over. I am glad you are here with me. Here at theend of all things, Sam." (J.R.R. Tolkien, The Return of the King)5.1 IntrodutionIn this hapter we introdue two spae-frequeny adaptive strategies for thenumerial approximation of the solutions of quantum hydrodynami (QHD)model for semiondutors, based respetively on wavelets and wavelet pak-ets. The two strategies have been ompared in [18℄ on a test ase, and waveletpakets perform better in approximating with fewer degrees of freedom thehigher frequeny dispersive osillations of the solution.Motivated by suh a result, we want to provide a way of optimizing waveletpakets adaptive shemes based on Galerkin disretizations, by extending thetehniques of wavelet ompression of ertain operators to the ase in whihsuh operators are represented in terms of wavelet pakets. The essentialobservation is that ertain operators have an almost sparse representation inwavelet oordinates thanks to the good properties of loalization both in spaeand in frequeny of wavelet bases. Thus disarding all entries below a ertainthreshold will be then give rise to a sparse matrix that an be further proessedby eÆient linear algebra tools.As wavelet pakets provide better properties of loalization both in spaeand in frequeny, the representation of suh operators in terms of wavelet135



136 Adaptivity & Wavelet Pakets Chapter 5pakets should be in priniple more sparse than in the wavelet ase. Thus awavelet-like ompression tehniques should give rise to a muh more sparsematrix, possibly reduing the omputational ost in solving the linear systemsresulting from the Galerkin disretization of the problem.5.2 Motivation: the QHD EquationsThe quantum hydrodynami model (QHD) for semiondutors has been re-ently introdued (see e.g. [2℄, [51℄, [52℄) in order to desribe with marosopiuid-type unknowns phenomena, suh as negative di�erential resistane ina resonant tunneling diode, whih are due to quantum e�ets and annotbe modeled with lassial or semi{lassial desriptions. Mathematially, theQHD system is a dispersive regularization of the so{alled hydrodynami equa-tions (HD) for semiondutors (a hyperboli system of onservation laws ou-pled self{onsistently with the Poisson equation). As usual in marosopisemiondutor models, the eletron position density or some of its derivativesmay present strong variation or even blow up in some points. Moreover, thedispersive harater of the QHD system implies that the solution may de-velop high frequeny osillations, whih are loalized in regions not a prioriknown. Therefore, numerial simulations of the QHD system with uniformdisretizations require an extremely high number of grid points, also when the\pathology" of the solution, whih enfores the mesh size, is loalized in asmall perentage of the simulation domain. This leads to unneessarily timeonsuming omputations.Due to the possible dispersive osillations, an eÆient approximation de-mands the use of a disretization where not only the spatial grid, but also thefrequeny distribution is adaptively adjusted to the behavior of the solution.One way of ahieving suh a goal is to use bases with good loalization bothin spae and frequeny. Wavelet type bases, whih display suh a property,have already been suessfully used in the design of eÆient adaptive shemesin various appliation �elds (see e.g. [16℄, [12℄, [11℄, [28℄, [50℄, [58℄, [67℄, [63℄).Due to their harateristis, the de�nition of riteria for driving the adaptiveproedure (re�ning and oarsening) both in spae and in frequeny is quite nat-ural. In partiular, wavelet based adaptive algorithms have been introdued in([18℄) for the semiondutor hydrodynami model, where, after performing adi�usive regularization, the adaptive strategy is aimed at well approximatingsolutions with steep gradients.Here we reall [18℄ the feasibility of an adaptive algorithm based on waveletsand wavelet pakets for the QHD model. Wavelet pakets have better fre-queny loalization properties and onsequently they are superior to wavelets



Setion 5.2. Motivation: the QHD Equations 137in drastially diminishing the required number of degrees of freedom for wellapproximating solutions whih exhibit high frequeny osillations.We onsider the isothermal, stationary, one dimensional quantum hydro-dynami (QHD) equations in the domain (0; 1)8>>>>>><>>>>>>:
J"x = 0;�(J")2u" + u"�x + u"Vx � "22 u"�pu"xxpu" �x = �J"� ;��2V = u" � C(x): (P")Here u" (whih we will also at times denote by u(")) denotes the eletrondensity, J" the urrent density, V the eletrostati potential. The parameter" is the saled Plank onstant, the funtion C(x) represents the (presribed)doping pro�le of the semiondutor devie, the parameter � is the saled Debyelength and � is the relaxation time.As pointed out before, equations (P") are a dispersive regularization of thelassial isothermal hydrodynami (HD) equations8>>>>>><>>>>>>:

Jx = 0;�J2u + u�x + uVx = �J� ;��2�V = u� C(x);and, in the formal limit, the QHD equations tend to the HD equations. How-ever, due to the dispersive term and the non-linearity, if the HD system exhibitsa shok disontinuity, the solution of the QHD system is expeted to developdispersive osillations, whih are not damped as " goes to zero. In that aseonly a weak onvergene an hold as " goes to zero and the limiting system isnot expeted to be the HD system. In [75℄ a numerial study shows evideneof this fat. A omplete theory on the small dispersion limit for the QHDsystem is still an open problem. We refer to [53℄, [54℄, [57℄ for partial answersin speial ases.Figures 1{3 present the solution of (P") for di�erent values of " (" = 0:01," = 0:005 and " = 0:0026, resp.). The pitures learly show that the osillationamplitude and loation does not hange as " dereases. Changes in " a�etonly the osillation frequeny, whih is about the double when " is halved.An eÆient numerial sheme to solve problem (P") when dispersive osil-lations our is a hallenging issue. The osillations must be well resolved in
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Figure 1. Solution of (P") for " = :01 (� = 0:1, � = 1=8 and V0 = 6:5, with dopingpro�le C as in �gure 6).
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Figure 2. Solution of (P") for " = :005 (� = 0:1, � = 1=8 and V0 = 6:5, withdoping pro�le C as in �gure 6).
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Figure 3. Solution of (P") for " = :0026 (� = 0:1, � = 1=8 and V0 = 6:5, withdoping pro�le C as in �gure 6).



140 Adaptivity & Wavelet Pakets Chapter 5order to keep the orret limiting behavior (for " �! 0) and it is lear that adisretization on a uniform grid requires too many degrees of freedom.We point out that due to the presene of the dispersive regularization, nospeial treatment is required to approximate the onvetion terms in (P"). Onthe ontrary, the use of upwind{type shemes would introdue spurious numer-ial damping of the osillations and, onsequently, further strong restritionon the mesh size in order to desribe orretly the osillations. We refer to[75℄ for a disussion on this issue.5.3 Adaptive Solution of QHD EquationsProblem (P") is highly non{linear, due to the non{linear terms in the seondequation of (P") and to the strong oupling to the Poisson equation. A ontin-uation proedure in the parameter " is an eÆient strategy to deal with suhproblems and it an be oupled, for instane, to a (possibly damped) Newtonalgorithm for solving the non{linear system for a given " of the ontinuationproedure. More preisely, for solving problem (P"), with a presribed �", wede�ne a �nite dereasing sequene f"n; n = 0; :::; Ng with "0 � 1 and "N = �",and we solve the sequene of problems (P"n). For the solution of problem(P"n+1), the knowledge of the solution of (P"n) is exploited in several ways forenhaning the eÆieny of the algorithm, for instane it an be used as aninitial guess for the Newton sheme. This proedure has been used in [75℄for solving (P"), there disretized with a �nite di�erene sheme on a uniformgrid.Here, we are interested in designing and testing some strategies for takingadvantage of the knowledge of the omputed solution of (P"n) for reduingthe number of degrees of freedom to be used for numerially solving problem(P"n+1). We aim at an algorithm of the following form.� Choose a lass B whose elements B are the L2-orthonormal bases of �nitedimensional subspaes VB of L2:B = fB : B �nite orthonormal basis of VB =< B >span� L2g: (5.3.1)We assume that the basis funtions onsidered are suÆiently smooth.� Compute an approximation u0 to the solution u("0) of equations (P") for" = "0 using a oarse uniform grid. This is possible sine for " � 1 thesolution of (P") is smooth.� Given the approximation un to the solution u("n) of (P"n), an approxi-mation un+1 to the solution u("n+1) of (P"n+1) is obtained as follows:



Setion 5.3. Adaptive Solution of QHD Equations 141{ By analyzing un selet a basis Bn+1 2 B, as small as possible, wellsuited for approximating u("n+1).{ Compute un+1 in Vn+1 =< Bn+1 >span approximate solution of(P"n+1), by a suitable numerial method (for instane, Galerkin ap-proximation of (P"n+1)).Due to the onset of high frequeny osillations in a possible large (thoughloalized) portion of the domain, in order to be able to approximate the so-lutions of (P") with few degrees of freedom, it is not enough to work withmethods that are adaptive only with respet to the spae. We will then ratherwork with basis funtions whih display good loalization properties also inthe frequeny domain. In partiular we will onsider bases B whose elementswill be phase atoms. Phase atoms ([84℄) are smooth funtions whih are wellloalized in both position and momentum in the sense of quantum mehanis.More preisely, a phase atom  needs to satisfy the following properties.� Finite Energy. Possibly after a re-normalization, it holdsk kL2 = 1:� Smoothness and deay. Both  and  ̂ are smooth ( ̂ being the Fouriertransform of  ).� Finite position and momentum.x0 := Z xj (x)j2 dx <1;�0 := Z �j ̂(�)j2 d� <1;are respetively alled position and momentum (or frequeny) of  .� Loalization in position and momentum. We have�x := �Z (x� x0)2j (x)j2 dx�1=2 <1;�� := �Z (� � �0)2j ̂(�)j2 d��1=2 <1:�x and �� are also alled position and momentum unertainty respe-tively.In the following two setions we will onsider two lasses of phase atoms,namely wavelets and wavelet pakets. In partiular we will analyze the perfor-manes of suh two lasses in the framework of adaptive approximation of thesolution of (P").



142 Adaptivity & Wavelet Pakets Chapter 55.4 WaveletsThe �rst possibility that we onsider is the one of wavelet adaptivity. Sinethe notation that we will use in this hapter di�ers slightly from the notationused up to now, let us �x it. In the literature it is possible to �nd a largenumber of orthonormal wavelet bases for L2:L2 =<  jk; j 2 Z+; k = 1; � � � ; 2j >span :Suh bases onsist of funtions with the following loalization properties:� The position of  jk is xjk = k=2j.� The momentum of  jk is �jk = �2j (� 6= 0 independent of j and k).� The loalization in position of  jk is �xjk � 2�j.� The loalization in frequeny (or momentum) of  jk is ��jk � 2jWe remark that, by the Heisenberg unertainty priniple it is not possible toloalize a funtion arbitrarily well both in position and momentum (�x ��� �1). Therefore the funtions  jk are loalized in the phase spae nearly as wellas possible.The onstrution of suh bases is originally performed on R, but it anbe arried out also on the interval ([33℄) with boundary onditions of di�erenttype (homogeneous Dirihlet, periodi, . . . ). However in this paper we will notexpliitly deal with the issue of boundary ondition, sine the phenomenologywe are interested in is in general onentrated far from the boundaries.Remark 5.4.1: Though for simpliity we onsider here only orthonormal waveletbases, the strategy that we are going to present ould be applied, without majormodi�ations, in the more general framework of biorthogonal wavelets. [32℄We reall that the above loalization properties imply that a norm equiv-alene of the form kfkHr �  Xj;k 22jrj < f;  jk > j2!1=2holds for all f 2 Hr, r 2 (�R;R), with the parameter R > 0 depending on thepartiular wavelet basis under onsideration. For f 2 H�r, r > 0 the notation< �; � > is to be intended as the duality relation between H�r and Hr.In the following it will be useful to represent eah basis funtion  jk withthe retangle ℄k2�j; (k + 1)2�j[�℄2j; 2j+1[ in the (x; �) plane. Using suh a
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144 Adaptivity & Wavelet Pakets Chapter 5representation yields a \tiling" of the phase spae whih well represents theloalization features of suh bases.When onsidering adaptive wavelet methods the lass of bases B takes theform B = fB = f jk; (j; k) 2 �g; � �nite subset of Z+� Zg:A simple, yet e�etive, adaptive strategy based on wavelet bases is thefollowing [67℄, [12℄, [18℄. Let u("n) be given:u("n) =Xj;k unj;k jk:We an onstrut a basis Bn+1 2 B for approximating u("n+1) by simply look-ing at the size of the oeÆients unj;k. If a oeÆient is big, the orrespondingfuntion is inluded in the basis Bn+1, as well as some \neighboring" (in thephase-spae) funtions. If, on the other hand, a oeÆient is very small, theorresponding funtion will not belong to the basis Bn+1.More preisely, we de�ne Bn+1 as follows. We hoose two toleranes Ær andÆa, as well as a number Nadd of \relevant neighbors", and we setBrn+1 = n jk : 2 32 jjunj;kj > Æro : (5.4.1)Moreover, we setIaddn+1 = f(j; k) : 2 32 jjunj;kj > Æag; (5.4.2)Njk = f(j + �; 2�k + �); � = 0; 1; � = �Nadd; � � � ; Naddg; (5.4.3)Ban+1 = [(j;k)2Iaddn+1f jk; (j; k) 2 Njkg: (5.4.4)The basis Bn+1 is then de�ned asBn+1 = Brn+1 [ Ban+1: (5.4.5)We stress out that the above re�ning and de-re�ning strategy is tuned in orderto give a good approximation in H 32 rather than in L2. This is reeted bythe presene of fator 2 32 j in equations (5.4.1) and (5.4.2). The hoie [18℄ ofsuh a norm is heuristially motivated by the fat that we are dealing with athird order operator.5.5 Wavelet PaketsA \Wavelet Paket ditionary" D is a overly redundant (non linearly indepen-dent) set of funtions, whih, by abuse of notation we will all \basis fun-tions". Eah basis funtion wp;!;s in the set is identi�ed by three parameters:



Setion 5.5. Wavelet Pakets 145the (saled) position p, the (saled) wave number ! and the sale s. Eahof these funtions is onstruted in suh a way that its spae-loalization is�x � 2�s with enter p=2s and its frequeny-loalization is �� � 2s with en-ter !2s. Again, in view of the Heisenberg unertainty priniple, the funtionswp;!;s are loalized in the phase spae nearly as well as possible.For a given f 2 L2 one an de�ne the wavelet paket transform of f :dp;!;s(f) = Z fwp;!;s:Out of a given \Wavelet Paket ditionary" it is possible to extrat manydi�erent orthonormal bases for L2 of the form B� = fwp;!;s; (p; !; s) 2 �g, byseleting suitable subsets � of the index set f(p; !; s)g. For suh subsets theinversion formula holds for any f 2 L2:f = X(p;!;s)2� dp;!;s(f)wp;!;s:In partiular, for the hoie � = f(p; 1; s); p 2 Z; s 2 Z+g one obtains theusual wavelet orthonormal basis desribed in the previous setion.The \basis funtions" wp;!;s an be onstruted as follows. We start byhoosing two quadrature mirror �lters, two �nite sequenes fhng and fgng,satisfying the following relations:Xn h2n =Xn h2n+1 = 1p2 ; gn = (�1)n�1h1�n 8n 2 Z; (5.5.1)Xn hnhn+2m =Xn gngn+2m = (1; if m = 0;0; otherwise; (5.5.2)Xn hngn + 2m = 0; 8m 2 Z: (5.5.3)We an then de�ne a family of funtions, depending on an integer parameter` � 0 by W2`(x) = p2Xn hnW`(2x� n); (5.5.4)W2`+1(x) = p2Xn gnW`(2x� n): (5.5.5)We remark that W0 satis�es a dilation equation. Conditions (5.5.1 { 5.5.3)guarantee the existene of a ompatly supported solution of suh a dilation



146 Adaptivity & Wavelet Pakets Chapter 5equation (and therefore they imply the well posedness of de�nition (5.5.4)). W0andW1 are, respetively, the saling and wavelet funtions of the orrespondingwavelet basis. The pair fhng and fgng an be hosen in suh a way that thefuntions W` have any presribed smoothness.Lemma 5.5.1: Let fhng and fgng be two families of QMFs satisfying ondi-tions (5.5.1 { 5.5.3). Let fW`g` the family of wavelet pakets assoiated withthe �lters fhng and fgng. Then there is a K < 1, suh that supp(W`) �[�K;K℄, for all ` � 1.For p 2 Z; ! 2 Z+; s 2 Z+, wavelet pakets are then de�ned bywp;!;s = 2s=2W!(2sx� p); (5.5.6)where ! is the (integer) saled wave number.Orthonormal sets an be extrated out of the wavelet paket ditionaryby seleting index subsets � for whih the dyadi intervals f[!2s; (! + 1)2s[:(p; !; s) 2 �g form a disjoint over of the positive semi-axis.More preisely, we will say that an index set � is admissible if the followingondition is satis�ed: for � de�ned by� = f(!; s) : 9p; (p; !; s) 2 �g;it holds for eah (!; s); (!0; s0) 2 �(!; s) 6= (!0; s0)) [!2s; (! + 1)2s[\[!02s0; (!0 + 1)2s0[= ;:It is possible to prove that if the index set � is admissible, then B� =fwp;!;s; (p; !; s) 2 �g forms an orthogonal system.We say that an admissible index set �,� = f(p; !; s); (!; s) 2 �; p 2 I(!;s)g;is omplete at sale S on the domain T if � satis�es[(!;s)2�[!2s; (! + 1)2s[= [0; 2S[; (5.5.7)and if, for all (!; s) 2 �, the set I(!;s) = fp : (p; !; s) 2 �g satis�es[p2I(!;s)[p2�s; (p+ 1)2�s℄ � T: (5.5.8)Roughly speaking, a omplete index set identi�es the orthonormal basis ofa disrete subspae of L2(T) orresponding to a uniform disretization with



Setion 5.5. Wavelet Pakets 147mesh size 2�S. Condition (5.5.7) assures that all the frequenies below 2S areovered, and ondition (5.5.8) guarantees that, for all frequeny ranges, all thespatial positions are present.We an then de�ne a lass B of bases as follows:B = fB� � D;� 2 Lg; B� := fwp;!;s; (p; !; s) 2 �g; (5.5.9)with L = f� : � is admissible and #(�) < +1g:Again, it is useful to visualize the phase-spae loalization property of eahbasis funtion by means of a \tiling" (obtained by representing wp;!;s by theretangle ℄p2�s; (p+ 1)2�s[�℄2s!; 2s(! + 1)[.
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SpaceFigure 5. \tilings" orresponding to di�erent wavelet pakets orthonormal basesThe redundany of the wavelet paket ditionary allows for a greater ex-ibility as far as spae frequeny loalization is onerned. On the other hand,the omputation of a good approximation of a funtion by means of few degreesof freedom needs for a more sophistiated approah.Let us at �rst onsider the problem of approximating a known funtionf with as few as possible degrees of freedom. The extration of a basis wellsuited for approximating the given funtion f with few degrees of freedomneeds now to be performed in two steps:(i) Selet a omplete (at sale S if the funtion is sampled with sampling rate2�S) index set �̂ 2 L.



148 Adaptivity & Wavelet Pakets Chapter 5(ii) Selet a subset �̂Æ � �̂ suh thatkf � X(p;!;s)2�̂Æ wp;!;swp;!;skH3=2 is small:Task (ii) an be performed quite easily thanks to the observation that forall funtions f 2 H3=2 and for any orthonormal basis B�̂ 2 B it holdskfkH3=2 � 0� X(p;!;s)2� j(2s!)3=2wp;!;sj21A1=2 :As far as task (i) is onerned, the optimal hoie is provided by an index set�̂ suh that the orresponding basis B�̂ minimizes a suitable additive entropy:H(f; B�̂) = minB� H(f; B�):The basis B�̂ is usually referred to as best basis for the funtion f . If the goalis, as in our ase, to approximate f with as few as possible degrees of freedom,then the entropy an be for instane hosen of the following formH(f; B�) = #(f(p; !; s) 2 � : j(2s!)3=2wp;!;sj � Æg): (5.5.10)One B�̂ has been seleted, the subset �̂Æ is learly de�ned as�̂Æ = f(p; !; s) 2 �̂ : j(2s!)3=2wp;!;sj � Æg: (5.5.11)The implementation of the wavelet paket transform and of the best basissearh algorithm for a given funtion f is desribed in detail in [35℄. If f issampled with step h, the entire proedure has omplexity 1h log 1h .5.6 Wavelets vs Wavelet PaketsIn [18℄ the e�etiveness of wavelet and wavelet pakets adaptive sheme hasbeen ompared. We report here the results of the tests.Let us start with the the following test on the e�etiveness of waveletmethods. Let ("n)n=0;��� ;N be given.� Compute a referene solution u("n), (n = 0; � � � ; N), by solving (P") for" = "n with a �nite di�erene sheme on a very �ne grid (\overkill"). Inour ase we used a disretization step 2:5 10�4.� For eah n = 0; � � � ; N � 1, perform the following proedure:



Setion 5.6. Wavelets vs Wavelet Pakets 149Step 1. given �un (omputed at the previous step)�un = Xj;k2�n unj;k jk;(�un approximation of u("n)), de�ne Bn+1 = f jk; (j; k) 2 �n+1gand the orresponding spae Vn+1 =< Bn+1 >span by the preedingadaptive strategy (5.4.1){(5.4.5).Step 2. de�ne �un+1 as the L2 orthogonal projetion of u("n+1) onto Vn+1�un+1 = X(j;k)2�n+1 < u("n+1);  jk >  jk:� For all n = 1; � � � ; N evaluate the relative erroren = ku("n)� �unkH3=2ku("n)kH3=2 :The above test has been performed for the following data in (P"): thedoping pro�le C(x) is hosen as in �gure 6, with max(C)=1 and min(C)=0.1,the Debye length is � = 0:1, the relaxation time is � = 1=8 and the appliedvoltage is V0 = 6:5. The solutions for these values of the parameters are theones depited in pitures 1{3.
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Figure 6. Doping pro�le C(x)In the following table we give [18℄ for eah n, the value "n, the relativeerror en, the ardinality Nadapt of the adaptively seleted basis Bn, as well as



150 Adaptivity & Wavelet Pakets Chapter 5the \ompression ratio" (CR) Nadapt=Nunif (Nunif (� 2j for some j) being thenumber of degrees of freedom whih would be neessary to represent u("n)with a uniform disretization with the same auray)."n en Nadapt CR.0075 .1535 120 4.27.007 .0218 156 3.28.006 .0377 160 3.20.005 .0202 175 2.93.004 .0208 195 5.25.0025 .0230 256 4.00.002 .0137 353 5.70.0016 .0111 446 4.51.0011 .0123 596 6.71.00102 .0020 858 4.66.001 .0014 969 4.13Table 5.6.1. Wavelet Adaptive StrategyIf one wants to use wavelet paket ditionaries and the onept of bestbasis in the framework of the adaptive type algorithm desribed in setion5.3, for eah "n+1 one must be able to perform tasks (i) and (ii), for u("n+1)by analyzing the solution u("n) at the previous ontinuation step. We willnot deal here with the problem relative to task (ii), the extration out ofthe best basis of a small subset well suited to well approximate u("n+1). Werefer to [63℄, where a possible strategy has been proposed, based on a suitablede�nition of \neighbors" (in the phase spae) of a given basis funtion wp;!;s.We will rather onentrate here on the problem of seleting the best basis -or a lose enough basis - for u("n+1), by analyzing the solution u("n) at theprevious ontinuation step.In order to verify to what extent this is feasible, the following test has beenperformed� Compute u("n) (n = 0; : : : ; N) by solving the QHD equations for " = "nby �nite di�erenes on a very �ne grid (\overkill"). In our ase we useda disretization step 2:5 10�4 (whih orresponds to a sale S � 12)� Compute the wavelet paket transform wnp;!;s of u("n)wnp;!;s = Z u("n)wp;!;s;



Setion 5.6. Wavelets vs Wavelet Pakets 151and selet the best basis B̂n = fwp;!;s; (p; !; s) 2 �̂ng :H(u("n); B̂n) = minB� H(u("n); B�):� Compute the number of oeÆients needed for approximating u("n+1)using elements of the best basis for u("n):H(u("n+1); B̂n)) = #(f(p; !; s) 2 �̂n : j(2s!)3=2wn+1p;!;sj � Æg);and ompare H(u("n+1); B̂n)) with the optimal number of oeÆientsH(u("n+1); B̂n+1)).� De�ne an approximation to u("n+1), by seleting an index set �̂nÆ�̂nÆ = f(p; !; s) 2 �̂n : j(!2s) 32wn+1p;!;sj � Ægand omputing �un+1 = X(p;!;s)2�̂nÆ wn+1p;!;swp;!;s:� Evaluate the relative erroren+1wp = ku("n+1)� �un+1kH3=2ku("n+1)kH3=2 :The following table [18℄ summarizes the results of suh test, performed inthe same ase as in the previous setion. We report the values of "n+1, of thenumber Nopt of signi�ant degrees of freedom when approximating u("n+1) bymeans of the best basis B̂n+1� , the number Nest when approximating u("n+1) bymeans of the best basis B̂n� obtained from the analysis of u("n) and the erroren+1wp . The table also displays the two ompression ratios CRopt = Nunif=Noptand CRest = Nunif=Nest (Nunif is de�ned, as in the previous setion, as thenumber of degrees of freedom whih would be neessary to represent the solu-tion with the same auray by means of a uniform disretization of wavelettype).If we analyse the results of the previous tests we realise that wavelet adap-tivity for the numerial solution of QHD system is not entirely satisfatory.This is mainly due to the fat that wavelet bases approximate high frequenieswith basis funtions whih are highly loalized in spae. In other words, whenapproximating an highly osillating funtion, the use of wavelets orrespond tousing (in the region where osillations our) an uniform disretization. By aomparison it is lear that, espeially at very high frequenies, wavelet paketsperform better, allowing to almost double the ompression ratio.
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"n Nopt Nest CRopt CRest enwp.0075 95 116 5.3 4.4 .0080.007 102 105 5.0 4.8 .0074.006 112 122 4.6 4.2 .0067.005 124 137 4.1 3.7 .0080.004 150 163 6.8 6.3 .0045.0025 192 168 6.1 5.3 .0028.002 253 292 8.0 6.9 .0023.0016 331 366 6.0 5.5 .0024.0011 480 585 8.3 6.8 .0012.00102 525 550 7.6 7.3 .0010.001 496 503 8.1 8.0 .0011Table 5.6.2. Performane of an adaptive WP algorithm



Setion 5.7. Wavelet Paket adaptive methods & Compression tehniques 1535.7 Wavelet Paket adaptive methods & Compression tehniquesWavelet pakets, due to their better frequeny loalization property, are thensuperior to wavelets in drastially diminishing the required number of degreesof freedom for well approximating the solution. Clearly they are more ostlywhen used to solve problem (P"), due to the higher ost of the WP transformwith respet to the FWT, and to the additional ost of the best basis searh.The intrinsi diÆulties onneted with the appliation of wavelets in theframework of non{linear problems [44℄, [30℄ are even harder when dealing withWavelet Pakets. On the other hand the omputation of the wavelet paketoeÆients of a given funtion obtained by applying a nonlinear funtional toa wavelet paket launary sum, often requires the omputation of the orre-sponding saling oeÆients at the �nest sale, hene making the realization ofa fully adaptive wavelet paket sheme unfeasible from a omputational pointof view.However, the strong non{linearity of the problem requires a ontinuationalgorithm in the parameter " and for eah "n of the "-sequene a non{linearsystem must be solved (for instane with a Newton algorithm). It is thenlear that, when (P") is solved for a small ", a linearized QHD system mustbe solved many times and the muh lower number of degrees of freedom se-leted with the wavelet paket proedure is expeted to largely ompensatethe higher ost of the basis seletion and of the non{linearity treatment andto provide an over all more eÆient numerial sheme.1. Compute an approximation u0 to the solution u("0) of equations (P") for" = "0 using a oarse uniform grid. This is possible sine for " � 1 thesolution of (P") is smooth.2. Given the approximation un to the solution u("n) of (P"n), an approxi-mation un+1 to the solution u("n+1) of (P"n+1) is obtained as follows:� By analyzing un selet a wavelet pakets basis Bn+1, well suited forapproximating u("n+1).� Compute un+1 in Vn+1 =< Bn+1 >span approximate solution of(P"n+1), by a suitable numerial method (for instane, Galerkin ap-proximation of (P"n+1)).When we deal with the omputation of un+1 in Vn+1 =< Bn+1 >span, approxi-mate solution of (P"n+1), by, for instane, Galerkin approximation, we need tosolve in�nite linear systems of the typeRun+1 = g;



154 Adaptivity & Wavelet Pakets Chapter 5where un+1 has only N nonzeros elements (we say un+1 2 �N), due to thepartiular hoie of the basis Bn+1 and R = (r�;�0), withr�;�0 = R w�w(f)�0 ,� = (p; !; s), for some f > 0 and w�; w�0 belonging to Bn+1.Sine, as we will see in the next setion, the entries of the matries R in-volved in the wavelet paket disretization of the operators have good deayproperties, we an apply suh operators to sparse vetors in a quite e�etiveway, i.e. we an exploit the sparsity of the sti�ness matrix R and of the vetorun+1 in suh a way to perform, with a low omputational ost, an approxima-tion of the matrix-vetor produt Run+1.Non the less one an still hope to take advantage of the sparsity of thesolution of the QHD equation within the framework of a solution in the fullspae!5.7.1 First ompressionIn the wavelet ontext it is well known [20℄, [41℄ that a large lass of opera-tors have an almost sparse representation in wavelet oordinates thanks to thegood properties of loalization both in spae and in frequeny of wavelet bases.Thus disarding all entries below a ertain threshohld will then give rise to asparse matrix that an be further proessed by eÆient linear algebra tools.Motivated by suh a result, as wavelet pakets provide better properties of lo-alization both in spae and in frequeny, the representation of suh operatorsin terms of wavelet pakets should be in priniple sparser than in the waveletase. Thus applying wavelet-like ompression tehniques [41℄, [28℄, [27℄ in suha wavelet pakets framework, should give rise to muh sparser matries, henereduing the omputational ost in solving the linear systems resulting fromthe Galerkin wavelet pakets disretization of the problem.To do that we need to estimate objets of the typej Z wp;!;s(x)w(f)p0;!0;s0(x)dxj;where w(f)p0;!0;s0 is the f�th derivative of wp0;!0;s0. It is not restritive to sup-pose s > s0, otherwise we will integrate by parts f -times. Let us denote byi(wp;!;s; wp0;!0;s0) the funtion whose value is one if the supports of wp;!;s andwp0;!0;s0 are disjoint, zero otherwise, then the following estimate holds:Theorem 5.7.1: Let fW!g1!=0 be a family of wavelet pakets, then it holds����Z wp;!;s(x)w(f)p0;!0;s0(x)dx���� . 2(s+s0)=22�t(s�s0)+s0f�s+[log2 !0℄(f+t)i(wp;!;s; wp0;!0;s0):



Setion 5.7. Wavelet Paket adaptive methods & Compression tehniques 155In order to prove Theorem 5.7.1 we need the following result [60℄:Lemma 5.7.1: For every funtion W! it is possible to �nd a funtion g(x)suh that g(t)(x) = W!(x), with kgk1 � C, where t equals the number of nullmomenta of W! and g has the same support as W!.Proof: Using the above Lemma and integrating by parts yield:jr�;�0j := ����Z wp;!;s(x)w(f)p0;!0;s0(x)dx����� 2(s+s0)=2 ����Z [2�stg(2sx� p)℄(t)[W!0(2s0x� p0)℄(f)dx����� 2(s+s0)=2 ����Z 2�stg(2sx� p)[W!0(2s0x� p0)℄(f+t)dx����� 2(s+s0)=22�st2s0(f+t) ����Z g(2sx� p)W (f+t)!0 (2s0x� p0)dx����� 2(s+s0)=22�st2s0(f+t)kW!0kW f+t;1i(wp;!;s; wp0;!0;s0) Z jg(2sx� p)jdx:By using Bernstein-type inequalitykW!0kW f+t;1 � 2[log2 !0℄(f+t)kW!0k1;where [x℄ denotes the smaller integer larger or equal than x, we havejr�;�0j � 2(s+s0)=22�st2s0(f+t)2[log2 !0℄(f+t)i(wp;!;s; wp0;!0;s0)kg(x)k12�sjsupp(W!)j:Finally, by using Lemma 5.5.1 whih yields jsupp(W!)j � K for all !, oneobtains: jr�;�0j � C2(s+s0)=22�t(s�s0)+s0f�s+[log2 !0℄(f+t)Ki(wp;!;s; wp0;!0;s0)Now we are ready to apply our �rst ompression to the matrix R.De�nition Let us �x J > 0. We apply �rst trunation de�ning ~RJ =(~r�;�0)�;�0 as follows~r�;�0 = � r�;�0 ; if �0 2 I�(J) \ �N0; otherwisewhere I�(J) = I(1)� (J � 1) [ I(2)� (J � 1), withI(1)� (J � 1) = f�0 : i(w�; w�0) 6= 0; s > s0; 2l1((s0;!0)) � 2�(J�1)g



156 Adaptivity & Wavelet Pakets Chapter 5I(2)� (J � 1) = f�0 : i(w�; w�0) 6= 0; s0 > s; 2l2((s0;!0)) � 2�(J�1)g;while funtions li : N2 ! R are de�ned as followsl1((s0; !0)) := (s+ s0)=2� js� s0j(t� 1) + s0f � s+ [log2 !0℄(f + t)and l2((s0; !0)) := (s+ s0)=2� js� s0jt+ sf � s0 + [log2 !℄(f + t):Theorem 5.7.2: Let �N � � be a �xed subset of � of ardinality #�N � N ,then the following estimate holdskR� ~RJk`2(�N )!`2 � 3MKN2�J : (5.7.1)Proof: In order to prove the Theorem we use Shur Lemma and we redueto estimate X�02�N jr�;�0 � ~r�;�0 j:Using the de�nition of ~r�;�0 yieldsX�02�N jr�;�0 � ~r�;�0j � X�02�NnI� jr�;�0j:Hene, by using Theorem 5.7.1, it followsX�02�NnI� jr�;�0 j� X�0:s>s0�02�NnI(1)� jr�;�0j+ X�0:s<s0�02�NnI(2)� jr�;�0j� X(p0;!0;s0)2�NnI(1)� C2(s+s0)=22�t(s�s0)+s0f�s+[log2 !0℄(f+t)Ki(wp;!;s; wp0;!0;s0) +X(p0;!0;s0)2�NnI(2)� C2(s+s0)=22�t(s0�s)+sf�s0+[log2 !℄(f+t)Ki(wp;!;s; wp0;!0;s0)= X(p0;!0;s0)2�NnI(1)� C2(s+s0)=22�tjs�s0j+s0f�s+[log2 !0℄(f+t)Ki(wp;!;s; wp0;!0;s0) +X(p0;!0;s0)2�NnI(2)� C2(s+s0)=22�tjs0�sj+sf�s0+[log2 !℄(f+t)Ki(wp;!;s; wp0;!0;s0):Using the fat that the set fp0 : i(wp0;!0;s0; wp;!;s) 6= 0g has ardinality notgreater than 3M max(1; 2s�s0), where M depends on the length of the support



Setion 5.7. Wavelet Paket adaptive methods & Compression tehniques 157of W! yieldsX�02�N jr�;�0 � ~r�;�0j� X(!0;s0)2�NnI(1)� 3MK max(1; 2s�s0)C2(s+s0)=22�tjs�s0j+s0f�s+[log2 !0℄(f+t) +X(!0;s0)2�NnI(2)� 3MK max(1; 2s�s0)C2(s+s0)=22�tjs0�sj+sf�s0+[log2 !℄(f+t)= X(!0;s0)2�NnI(1)� 3MKC2(s+s0)=22�(t�1)js�s0j+s0f�s+[log2 !0℄(f+t) +X(!0;s0)2�NnI(2)� 3MK2(s+s0)=22�tjs0�sj+sf�s0+[log2 !℄(f+t)� 3MK( X(!0 ;s0)2�NnI(1)� 2l1((!0 ;s0)) + X(!0;s0)2�NnI(2)� 2l2((!0 ;s0)))Hene, by using the de�nitions of I(1)� and I(2)� , it followsX�02�N jr�;�0 � ~r�;�0 j � 3MKN2�J :In omplete analogy one proves an analogous estimate for the rows sumsX�2�N jr�;�0 � ~r�;�0 j � X�2�NnI�0 jr�;�0j � 3MKN2�J :
Remark 5.7.1: We obtained thatkR� ~RJk`2(�N )!`2 � 3MKN2�Jand so for eah un+1 2 �N we are able to estimate the error we ommit byusing ~RJ instead of R:k(R� ~RJ)un+1k`2 � kR� ~RJk`2(�N )!`2kun+1k`2 � 3MKN2�Jkun+1k`2 :This is a pessimisti estimate and quite rough if we ompare it with the one thatan be ahieved in wavelet ontext, but this huge di�erene an be ompensatedby the fat that wavelet pakets perform better than wavelet in approximatingwith fewer degrees of freedom the high frequeny dispersive osillations of thesolution of our partiular problem.



158 Adaptivity & Wavelet Pakets Chapter 55.7.2 Seond ompressionBy exploiting good properties of loalization even in frequeny of wavelet pak-ets, we an further ompress the matrix ~RJ , obtaining a seond matrix ~~RJ suhthat kR� ~~RJk`2(�N )!`2remains little.From equation (5.5.4) it follows thatŴ!(�) = m"1(�=2)m"2(�=4) : : :m"j(�=2j)Ŵ0(�=2j); (5.7.2)where "i 2 f0; 1g, m0(�) =Pn hnein�, m1(�) = e�i�m0(� + �) andjm0(�)j2 + jm0(� + �)j2 = 1: (5.7.3)From (5.7.3) and from the fat that m0(�) and m1(�) approximate better andbetter respetively the ideal low pass �lter and the ideal high pass �lter as thelengths of the �lter inrease, it is not diÆult to prove the following:Lemma 5.7.2: For every 0 < � < 1 it exists a ouple of quadrature mirror�lters of lengths depending on � suh that for every � it holds:jm0(�)m1(�)j � �: (5.7.4)Proof: We show only that if jm0(�)m1(�)j � �, then � < 1. In fat if� = 1, it would follow jm0(��)j = jm1(��)j = 1, for some ��, whih, used togetherwith (5.7.3), would give jm1(��)j = 0. Absurd.Now we are interested in estimating objets of the type:j Z Ŵ!(�)Ŵ!0(�)d�j:Lemma 5.7.3: The following estimate holdsj Z Ŵ!(�)Ŵ!0(�)d�j � C�!;!0 ;where � < 1, !;!0 =Pj0n=1 j!n � !0nj and C depends only on Ŵ0.Proof: From Planherel's theorem it follows thatZ W!(x)W!0(x)dx = 1=(2�) Z Ŵ!(�)Ŵ!0(�)d�:



Setion 5.7. Wavelet Paket adaptive methods & Compression tehniques 159Let us suppose j > j 0. Realling (5.7.2) yieldsj Z Ŵ!(�)Ŵ!0(�)d�j= j Z m"1(�=2)m"2(�=4) : : :m"j (�=2j)Ŵ0(�=2j)m"01(�=2)m"02(�=4) : : :m"0j0 (�=2j0)Ŵ0(�=2j0)d�j= j Z m"1(�=2)m"01(�=2) : : :m"j0 (�=2j0)m"0j0 (�=2j0)m"j0+1(�=2j0+1) : : :m"j(�=2j)Ŵ0(�=2j)Ŵ0(�=2j0)d�j:Now, by using Lemma 5.7.2, one obtainsj Z Ŵ!(�)Ŵ!0(�)d�j� Z jm"1(�=2)m"01(�=2)j : : : jm"j0 (�=2j0)m"0j0 (�=2j0)jjm"j0+1(�=2j0+1)j : : : jm"j(�=2j)jjŴ0(�=2j)jjŴ0(�=2j0)jd�� C�!;!0 ;where � < 1, !;!0 =Pj0n=1 j"n � "0nj and C depends only on Ŵ0.Let � = (p; !; s). Suppose for the moment s0 > s. As we want to improvethe ompression of matrix ~RJ , we are interested in estimating in partiularobjets of the type ����Z wp;!;s(x)w(f)p0;!0;s0(x)dx���� :Lemma 5.7.4: The following estimate holds����Z wp;!;s(x)w(f)p0;!0;s0(x)dx���� � 2�1=2(2(f�1=2)s0�s)(2�)�1C1Cf��;�0 ; (5.7.5)where C1; Cf depend only on ŵ0 and its Sobolev regularity. � < 1 and !;!0 =Pj0n=1 j!n � !0nj.



160 Adaptivity & Wavelet Pakets Chapter 5Proof: In omplete analogy with the proof of Lemma 5.7.3, one obtains����Z wp;!;s(x)w(f)p0;!0;s0(x)dx����= 2(s+s0)=22� �����Z � j�j2s0�f ei �2s0 p0Ŵ!0(�=2s0)ei �2s pŴ!(�=2s)d������� 2(s+s0)=22s0f2� Z j�jf jŴ!0(�=2s0)Ŵ!(�=2s)jd�� 2�1=2(2(f�1=2)s0�s)(2�)�1 Z j�jf jjm"01(�=2s0+1)m"02(�=22+s0) : : :m"0j0 (�=2j0+s0)Ŵ0(�=2j0+s0)m"1(�=2s+1)m"2(�=22+s) : : :m"j (�=2s+j)Ŵ0(�=2s+j)jd�:Using Lemma 5.7.2 yields����Z wp;!;s(x)w(f)p0;!0;s0(x)dx���� � 2�1=2(2(f�1=2)s0�s)(2�)�1C1Cf��;�0 ;where � < 1, !;!0 =Pj0n=1 j"n � "0nj, while C1; Cf depend only on Ŵ0 and itsSobolev regularity.Now we apply to ~RJ a seond ompression de�ned as followsDe�nition Let us de�ne ~~RJ = (~~r�;�0)�;�0 where~~r�;�0 = 8<: ~r�;�0 ; if �0 2 ��(J) \ �N0; otherwisewhere ��(J) = �(1)� (J � 1) [ �(2)� (J � 1), with�(1)� (J � 1) = f�0 : s < s0; 2�1=2(2(f�1=2)s0�s)��;�0 > 2�Jg;�(2)� (J � 1) = f�0 : s > s0; 2js�s0j�1=2(2(f�1=2)s�s0)��;�0 > 2�Jg:Theorem 5.7.3: Let �N � � be a �xed subset of � of ardinality #�N � N ,then the following estimate holdsk ~RJ � ~~RJk`2(�N )!`2 . N2�J : (5.7.6)Proof: In order to prove the Theorem we use Shur's Lemma. Hene weredue to estimateP�02�N j~r�;�0 � ~~r�;�0 j. By means of the de�nition of the set



Setion 5.8. Open problems and perspetives 161�� we obtain X�02�N j~r�;�0 � ~~r�;�0j� X�02(�N\I�)n�� j~r�;�0j� X�0:s<s0�02(�N\I�)n�(1)� j~r�;�0j+ X�0:s>s0�02(�N\I�)n�(2)� j~r�;�0j:Now we proeed as in the proof of Theorem 5.7.2. Using Lemma 5.7.4 and thefat that the set fp0 : i(wp0;!0;s0; wp;!;s) 6= 0g has ardinality not greater than3M max(1; 2s�s0), whereM depends on the length of the support ofW!, yieldsX�02�N j~r�;�0 � ~~r�;�0 j� X(!0;s0)2(�N\I�)n�(1)� (2�)�13MK max(1; 2s�s0)2�1=2(2(f�1=2)s0�s)(2�)�1C1Cf��;�0 +X(!0;s0)2(�N\I�)n�(2)� (2�)�13MK max(1; 2s�s0)2�1=2(2(f�1=2)s�s0)(2�)�1C1Cf��;�0= 3MK(2�)�1C1Cf 0B� X(!0;s0)2(�N\I�)n�(1)� (2�)�12�1=2(2(f�1=2)s0�s)��;�0+X(!0;s0)2(�N\I�)n�(2)� 2js�s0j2�1=2(2(f�1=2)s�s0)(2�)�1��;�01CA� (3MK(2�)�1C1Cf)N2�J :In omplete analogy one proves an analogous estimate for the row sums.5.8 Open problems and perspetivesThe use of the adaptive treatment of a nonlinear PDE (desribing the eletrondensity in a quantum hydrodynami model for semi-ondutors) by waveletpakets disretization is motivated by the loally osillating patterns of thesolution whih an be better ompressed by a few wavelet pakets than bywavelets or adaptive �nite elements. This property is illustrated by some nu-merial examples. Even if in this Chapter we fous mainly on the issue of the



162 Adaptivity & Wavelet Pakets Chapter 5sparsity of the matrix resulting from the wavelet disretization of di�erentialoperators, there are however several new problems whih are raised by theuse of wavelet pakets for the adaptive disretization: appropriate quadraturerules, treatment of the nonlinear terms and onditioning of the resulting ma-tries.As a useful step toward a reliable implementation of suh an adaptivewavelet paket sheme, it would be interesting to study, in a simple modelase, the omputational e�etiveness of the ompression proedures presentedin Setion 5.7, by omparing the numerial results with the theoretial esti-mates (5.7.1) and (5.7.6).
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AknowledgementsThat Gandalf should be late, does not bode well. But it is said: "Do not meddlein the a�airs of Wizards, for they are subtle." The hoie is yours: to go orwait."But I don't think you need to go alone" exlaimed Gandalf. "Not if you knowof anyone you an trust, and who would be willing to go by your side { andthat you would be willing to take into unknown perils. But if you look for aompanion, be areful in hoosing! And be areful of what you say, even toyour losest friends! The enemy has many spies and many ways of hearing."At last the ompanions turned away, and never again looking bak they rodeslowly homewards; and they spoke no word to one other until they ame bakto the Shire, but eah had great omfort in his friends on the long grey road.In a hair, at the far side of the room faing the outer door, sat a woman.Her long blak hair rippled down her shoulders. "Come dear folk!" she said,taking Frodo by the hand. "Laugh and be merry! I am Goldberry, daughter ofthe River.""For you" she said to Sam, "I have only a small gift." She put into his handa little box of plain grey wood, unadorned save for a single silver rune uponthe lid. "In this box there is earth from my orhard. Though you should �ndall barren and laid waste, there will be few gardens in Middle-earth that willbloom like your garden, if you sprinkle this earth there. Then you may remem-ber Galadriel."But Sam turned to Bywater, and so ame bak up the Hill, as the day wasending one more. And he went on, and there was yellow light, and �re within;and he was expeted. He drew a deep breath. "Well, I'm bak," he said.


